DEVOIR 1. HOLOMORPHIC MAPS AND COMPLEX MANIFOLDS

Exercises with \bigstar : hand in only these exercises.

Exercises with **: don't hand in, try to read some references and convince yourself.

Exercise 1. Let f be a meromorphic function on an open and connected subset U in \mathbb{C} .

- (a) Show that for any compact set $K \subset U$, the set of zeros and poles of f in K are finite.
- (b) For $x \in U$, show that there exists an integer $k_x \in \mathbb{Z}$ such that, in a neighborhood U_x of x,

$$f(z) = (z - x)^{k_x} h(z)$$

with $h: U_x \to \mathbb{C}$ holomorphic and invertible.

(c) Let $\mathbb{D} \subset U$ be a disk with center $x \in U$, such that x is the only pole and zero of f in \mathbb{D} . Show

$$k_x = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{df}{f}.$$

(d) Show that if $(a_1, \dots, a_d) \in \mathbb{D}^d$, are the zeros (counted with multiplicities) of a holomorphic function $f: \mathbb{D} \to \mathbb{C}$, and $m \in \{0, \dots, d\}$, then

$$\sum_{i=1}^{d} a_i^m = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} z^m \frac{f'(z)}{f(z)} dz.$$

Exercise 2. Let f be a holomorphic function on the unit ball $\mathbb{B}^n \subset \mathbb{C}^n$. Suppose that $|f| \leq M$ and $D^{\alpha}f(0) = 0$ for all $|\alpha| \le k$. Show that $|f(z)| \le M||z||^k$ for all $z \in \mathbb{B}^n$.

Hint: you can consider the function $g_z(t) = f\left(\frac{tz}{\|z\|}\right)$.

Exercise 3. \bigstar Let U be an open connected subset of \mathbb{C}^2 . Consider $f:U\to\mathbb{C}$ a holomorphic function and $Z(f) := \{x \in U \mid f(x) = 0\}.$

- (a) Show that if f doesn't vanish on $U \setminus \{z_1 = z_2 = 0\}$, then Z(f) is empty.
- (b) Show that $U \setminus Z(f)$ is either connected and dense or empty.

Hint: if $U \setminus Z(f) = U_1 \cup U_2$ is not connected, apply Riemann's extension theorem to the function $g \in \mathcal{O}(U \setminus Z(f))$ such that g = 1 on U_1 and g = 0 on U_2 .

Exercise 4. Let U be an open subset of \mathbb{C}^n , which we identify with \mathbb{R}^{2n} via the map

$$\mathbb{C}\ni z_i=x_i+iy_i\mapsto (x_i,y_i)\in\mathbb{R}^2,$$

where $z_j = x_j + iy_j$ is the standard coordinates on U for $1 \le j \le n$. Consider a smooth map $f: U \to I$ $\mathbb{C}^m = \mathbb{R}^{2m}$, also interpreted as a map to \mathbb{R}^{2m} . The complex Jacobian of f is defined as the matrix

$$J_{\mathbb{C}}(f) = \left(\frac{\partial f_i}{\partial z_j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}.$$

(a) With respect to the standard coordinates $w_i = u_i + iv_i$ on \mathbb{C}^m , compute the matrix of

$$df: T\mathbb{R}^{2n} \to T\mathbb{R}^{2m}.$$

(b) Find the matrix of the induced map

$$df_{\mathbb{C}}: T\mathbb{R}^{2n} \otimes \mathbb{C} \to T\mathbb{R}^{2m} \otimes \mathbb{C}$$

in terms of the frames $\left\{\frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_j}\right\}$ and $\left\{\frac{\partial}{\partial w_k}, \frac{\partial}{\partial \bar{w}_k}\right\}$. (c) Is there a relation between $J_{\mathbb{C}}(f)$ and $df_{\mathbb{C}}$? What happens when f is holomorphic?

- (d) Show that when f is holomorphic and n = m, we have

$$\det df = |\det J_{\mathbb{C}}(f)|^2.$$

- (e) Use this to prove that a complex structure induces a natural orientation on the underlying differentiable manifold.
- (f) Give an example of an even-dimensional manifold that does not admit a complex structure. Could it admit an almost complex structure?

Exercise 5. Suppose that X is a complex manifold and Γ is a discrete group acting freely and properly discontinuously by biholomorphisms on X. 1

2 DEVOIR 1

- (a) Show that X/Γ admits the structure of a complex manifold such that the map $\pi: X \to X/\Gamma$ is holomorphic and locally biholomorphic.
- (b) Deduce that the Hopf surface defined as the quotient $\mathbb{C}^2 \setminus \{0\}/\sim$, where $(w_1, w_2) \sim (z_1, z_2)$ if $w_j = 2^s z_j$ for some fixed $s \in \mathbb{Z}$, is a complex manifold.
- (c) Show that the Hopf surface is diffeomorphic to $\mathbb{S}^3 \times \mathbb{S}^1$.

Exercise 6. \bigstar The *n*-dimensional complex projective space \mathbb{P}^n is the quotient

$$(\mathbb{C}^{n+1} \setminus \{0\})/\sim$$

where $z \sim w$ if $\exists \lambda \in \mathbb{C}^*$ such that $\lambda z = w$.

- (a) Show that \mathbb{P}^n is a complex manifold of dimension n.
- (b) Show that \mathbb{P}^n is compact and connected.
- (c) Give a diffeomorphism between \mathbb{P}^1 and \mathbb{S}^2 .
- (d) (optional) Convince yourself that for any $x \in \mathbb{P}^n$, $T_x \mathbb{P}^n \simeq \operatorname{Hom}_{\mathbb{C}}(x, \mathbb{C}^{n+1}/x)$ as a vector space.

Exercise 7. \bigstar Let $f: \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function and $0 \in \mathbb{C}$ is a regular point (i.e. the complex Jacobian $J_{\mathbb{C}}(f)$ is surjective at any point in $f^{-1}(0)$). Show that $f^{-1}(0)$ is a complex submanifold in \mathbb{C}^n .

Exercise 8. \bigstar Let F be a homogeneous polynomial in (n+1) variables. Show that the set

$$Z = \{ [z_0 : \dots : z_n] \in \mathbb{P}^n \mid F(z_0, \dots, z_n) = 0 \}$$

is well-defined. Considering the map $f: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}$ induced by F, show that if 0 is a regular value of f then Z is a complex submanifold of \mathbb{P}^n .

Exercise 9. \bigstar Let X be a compact complex manifold. Show that if a holomorphic function $f: X \to \mathbb{C}$ vanishes on an open subset of X, then it must be identically zero.

Exercise 10. Let X be an n-dimensional complex manifold and $Y \subset X$ a real submanifold of dimension 2k. Show that Y is a complex submanifold if and only if, locally, it coincides with the vanishing locus of n-k independent holomorphic functions.

Exercise 11 (Blow-ups, reading exercise: Voisin's book Section 3.3.3). $\bigstar \bigstar$ Let X be an n-dimensional complex manifold and $Y \subset X$, a closed complex submanifold of dimension n-k < n. Let $U \subset X$ be an open set such that $U \cap Y = Z(f_1^U) \cap \cdots \cap Z(f_k^U)$ where $f^U = (f_1^U, \cdots, f_k^U) : U \to \mathbb{C}^k$ is holomorphic (and 0 is a regular value).

- (a) Show that if $g^U=(g_1^U,\cdots,g_k^U)$ is another system of holomorphic functions defining $Y\cap U$ then there exists a matrix valued function $M_{fg}^U:U\to \mathrm{GL}(k,\mathbb{C})$ with holomorphic components and such that $g^U=M_{fg}^Uf^U$ pointwise. Moreover, M_{fg}^U is uniquely determined by f^U and g^U along Y.
- (b) Check that $\widetilde{U}_Y := \{([w_1, \cdots, w_k], z) \in \mathbb{P}^{k-1} \times U \mid w_j f_i^U(z) = w_i f_j^U(z), i, j = 1, \cdots, k\}$ is complex submanifold of $\mathbb{P}^{k-1} \times U$ and that the projection over the second factor $\tau_U : \widetilde{U}_Y \times U$ is an isomorphism over $U \setminus Y$. What is $\tau_U^{-1}(y)$ for $y \in U \cap Y$?
- (c) Use (a) to show that if $V \subset X$ is another subset defining \widetilde{V}_Y as above we get a natural biholomorphism

$$\phi_{UV}: \tau_U^{-1}(U \cap V) \to \tau_V^{-1}(U \cap V).$$

In particular, using these ϕ_{UV} to glue those open complex charts, we get a complex manifold \widetilde{X}_Y called the blow-up X along Y. Show that the maps $\tau_U:\widetilde{U}_Y\to U$ glued together give a surjective map $\tau:\widetilde{X}_Y\to X$ which is a biholomorphism over $\widetilde{X}_Y\setminus \tau^{-1}(Y)$.

(d) Show that for $X = \mathbb{C}^{n+1}$ and $Y = \{0\}$ there is a surjective map $\pi : \widetilde{X}_Y \to \mathbb{P}^n$.