DEVOIR 1. APPLICATIONS HOLOMORPHES ET VARIÉTÉS COMPLEXES

Exercices avec \bigstar : à remettre uniquement ces exercices.

Exercices avec ** : pas à remettre, essayez de lire quelques références et de vous en convaincre.

Exercice 1. Soit f une fonction méromorphe définie sur un ouvert connexe $U \subset \mathbb{C}$.

- (a) Montrer que pour tout compact $K \subset U$, l'ensemble des zéros et des pôles de f dans K est fini.
- (b) Pour $x \in U$, montrer qu'il existe un entier $k_x \in \mathbb{Z}$ tel que, dans un voisinage U_x de x,

$$f(z) = (z - x)^{k_x} h(z)$$

avec $h: U_x \to \mathbb{C}$ holomorphe et inversible.

(c) Soit $\mathbb{D} \subset U$ un disque centré en $x \in U$, tel que x soit l'unique zéro ou pôle de f dans \mathbb{D} . Montrer que

$$k_x = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{df}{f}.$$

(d) Montrer que si $(a_1, \dots, a_d) \in \mathbb{D}^d$ sont les zéros (comptés avec multiplicités) d'une fonction holomorphe $f: \mathbb{D} \to \mathbb{C}$, et si $m \in \{0, \dots, d\}$, alors

$$\sum_{i=1}^{d} a_i^m = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} z^m \frac{f'(z)}{f(z)} dz.$$

Exercice 2. Soit f une fonction holomorphe sur la boule unité $\mathbb{B}^n \subset \mathbb{C}^n$. Supposons que $|f| \leq M$ et que $D^{\alpha}f(0) = 0$ pour tout $|\alpha| \leq k$. Montrer que $|f(z)| \leq M||z||^k$ pour tout $z \in \mathbb{B}^n$.

Indication: on peut considérer la fonction $g_z(t) = f\left(\frac{tz}{\|z\|}\right)$.

Exercice 3. \bigstar Soit U un ouvert de \mathbb{C}^2 . Considérons une fonction holomorphe $f:U\to\mathbb{C}$ et posons $Z(f):=\{x\in U\mid f(x)=0\}.$

- (a) Montrer que si f ne s'annule pas sur $U \setminus \{z_1 = z_2 = 0\}$, alors Z(f) est vide.
- (b) Montrer que $U \setminus Z(f)$ est soit connexe et dense, soit vide. Indication: $si\ U \setminus Z(f) = U_1 \cup U_2$ n'est pas connexe, appliquez le théorème de prolongement de Riemann à la fonction $g \in \mathcal{O}(U \setminus Z(f))$ telle que g = 1 sur U_1 et g = 0 sur U_2 .

Exercice 4. Soit U un ouvert de \mathbb{C}^n , que l'on identifie à \mathbb{R}^{2n} via l'application

$$\mathbb{C} \ni z_j = x_j + iy_j \longmapsto (x_j, y_j) \in \mathbb{R}^2,$$

où $z_j = x_j + iy_j$ sont les coordonnées standards sur U pour $1 \le j \le n$. Considérons une application lisse $f: U \to \mathbb{C}^m = \mathbb{R}^{2m}$, également interprétée comme une application vers \mathbb{R}^{2m} . Le jacobien complexe de f est défini comme la matrice

$$J_{\mathbb{C}}(f) = \left(\frac{\partial f_i}{\partial z_j}\right)_{1 \leq i \leq m, \, 1 \leq j \leq n}.$$

(a) Par rapport aux coordonnées standards $w_i = u_i + iv_i$ sur \mathbb{C}^m , calculer la matrice de

$$df: T\mathbb{R}^{2n} \to T\mathbb{R}^{2m}.$$

(b) Trouver la matrice de l'application induite

$$df_{\mathbb{C}}: T\mathbb{R}^{2n} \otimes \mathbb{C} \to T\mathbb{R}^{2m} \otimes \mathbb{C}$$

en termes des repères $\left\{\frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_j}\right\}$ et $\left\{\frac{\partial}{\partial w_k}, \frac{\partial}{\partial \bar{w}_k}\right\}$.

- (c) Existe-t-il une relation entre $J_{\mathbb{C}}(f)$ et $df_{\mathbb{C}}$? Que se passe-t-il lorsque f est holomorphe?
- (d) Montrer que lorsque f est holomorphe et que n=m, on a

$$\det df = \left| \det J_{\mathbb{C}}(f) \right|^2.$$

- (e) Utiliser ce résultat pour prouver qu'une structure complexe induit une orientation naturelle sur la variété différentiable sous-jacente.
- (f) Donner un exemple d'une variété de dimension paire qui n'admet pas de structure complexe. Peut-elle admettre une structure presque complexe ?

2 DEVOIR 1

Exercice 5. Supposons que X soit une variété complexe et que Γ soit un groupe discret agissant librement et proprement discontinuement par biholomorphismes sur X.

- (a) Montrer que X/Γ admet une structure de variété complexe telle que l'application $\pi: X \to X/\Gamma$ soit holomorphe et localement biholomorphe.
- (b) En déduire que la surface de Hopf définie comme le quotient $\mathbb{C}^2 \setminus \{0\} / \sim$, où $(w_1, w_2) \sim (z_1, z_2)$ si $w_j = 2^s z_j$ pour un certain $s \in \mathbb{Z}$ fixé, est une variété complexe.
- (c) Montrer que la surface de Hopf est difféomorphe à $\mathbb{S}^3 \times \mathbb{S}^1$.

Exercice 6. \bigstar L'espace projectif complexe de dimension n, noté \mathbb{P}^n , est défini comme le quotient

$$(\mathbb{C}^{n+1}\setminus\{0\})/\sim$$

où $z \sim w$ s'il existe $\lambda \in \mathbb{C}^*$ tel que $\lambda z = w$.

- (a) Montrer que \mathbb{P}^n est une variété complexe de dimension n.
- (b) Montrer que \mathbb{P}^n est compact et connexe.
- (c) Donner un difféomorphisme entre \mathbb{P}^1 et \mathbb{S}^2 .
- (d) (optionnel) Se convaincre que pour tout $x \in \mathbb{P}^n$, on a $T_x \mathbb{P}^n \simeq \operatorname{Hom}_{\mathbb{C}}(x, \mathbb{C}^{n+1}/x)$ comme espace vectoriel.

Exercice 7. \bigstar Soit $f: \mathbb{C}^n \to \mathbb{C}$ une fonction holomorphe et supposons que $0 \in \mathbb{C}$ soit un point régulier (c'est-à-dire que le jacobien complexe $J_{\mathbb{C}}(f)$ est surjectif en tout point de $f^{-1}(0)$). Montrer que $f^{-1}(0)$ est une sous-variété complexe de \mathbb{C}^n .

Exercice 8. \bigstar Soit F un polynôme homogène en (n+1) variables. Montrer que l'ensemble

$$Z = \{ [z_0 : \cdots : z_n] \in \mathbb{P}^n \mid F(z_0, \cdots, z_n) = 0 \}$$

est bien défini. En considérant l'application $f: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}$ induite par F, montrer que si 0 est une valeur régulière de f, alors Z est une sous-variété complexe de \mathbb{P}^n .

Exercice 9. \bigstar Soit X une variété complexe compacte. Montrer que si une fonction holomorphe $f: X \to \mathbb{C}$ s'annule sur un ouvert de X, alors elle est identiquement nulle.

Exercice 10. Soit X une variété complexe de dimension n et $Y \subset X$ une sous-variété réelle de dimension 2k. Montrer que Y est une sous-variété complexe si et seulement si elle coïncide localement avec le lieu d'annulation de n-k fonctions holomorphes indépendantes.

Exercice 11 (Éclatements, exercice de lecture : Voisin, Section 3.3.3). $\bigstar \bigstar$ Soit X une variété complexe de dimension n et $Y \subset X$ une sous-variété complexe fermée de dimension n-k < n. Soit $U \subset X$ un ouvert tel que $U \cap Y = Z(f_1^U) \cap \cdots \cap Z(f_k^U)$, où $f^U = (f_1^U, \cdots, f_k^U) : U \to \mathbb{C}^k$ est holomorphe (et 0 est une valeur régulière).

- (a) Montrer que si $g^U=(g^U_1,\cdots,g^U_k)$ est un autre système de fonctions holomorphes définissant $Y\cap U$, alors il existe une application matricielle $M^U_{fg}:U\to \mathrm{GL}(k,\mathbb{C})$ à coefficients holomorphes telle que $g^U=M^U_{fg}f^U$ ponctuellement. De plus, M^U_{fg} est uniquement déterminée par f^U et g^U le long de Y.
- (b) Vérifier que $\widetilde{U}_Y := \{([w_1, \cdots, w_k], z) \in \mathbb{P}^{k-1} \times U \mid w_j f_i^U(z) = w_i f_j^U(z), i, j = 1, \cdots, k\}$ est une sous-variété complexe de $\mathbb{P}^{k-1} \times U$ et que la projection sur le second facteur $\tau_U : \widetilde{U}_Y \to U$ est un isomorphisme au-dessus de $U \setminus Y$. Que vaut $\tau_U^{-1}(y)$ pour $y \in U \cap Y$?
- (c) Utiliser (a) pour montrer que si $V \subset X$ est un autre ouvert définissant \widetilde{V}_Y comme ci-dessus, on obtient un biholomorphisme naturel

$$\phi_{UV}: \tau_U^{-1}(U \cap V) \to \tau_V^{-1}(U \cap V).$$

En particulier, en recollant ces ouverts complexes à l'aide des ϕ_{UV} , on obtient une variété complexe \widetilde{X}_Y appelée l'éclatement de X le long de Y. Montrer que les applications $\tau_U: \widetilde{U}_Y \to U$, recollées ensemble, définissent une application surjective $\tau: \widetilde{X}_Y \to X$ qui est un biholomorphisme au-dessus de $\widetilde{X}_Y \setminus \tau^{-1}(Y)$.

(d) Montrer que pour $X = \mathbb{C}^{n+1}$ et $Y = \{0\}$ il existe une application surjective $\pi : \widetilde{X}_Y \to \mathbb{P}^n$.