DEVOIR 2. VARIÉTÉS COMPLEXES ET CALCUL DIFFÉRENTIEL

Exercices avec \star : remettre uniquement ces exercices (Exercices 3, 7, 10, 14, 16).

Exercices avec $\star\star$: pas à rendre, mais à essayer par vous-même.

Exercices sans \star : ce sont des exercices standards; si vous ne les connaissez pas, il est important de les apprendre.

1. Rappel sur les variétés différentielles et le calcul différentiel

Exercice 1. Considérons le 2-tore \mathbb{T}^2 et le difféomorphisme local $\Phi: \mathbb{R}^2 \to \mathbb{T}^2$ défini par $\Phi(\theta_1, \theta_2) =$ $(e^{2\pi i\theta_1}, e^{2\pi i\theta_2}).$

- (a) Donner une condition sur un champ de vecteurs $X \in \Gamma(T\mathbb{R}^2)$ pour que Φ_*X définisse un champ de vecteurs sur \mathbb{T}^2 .
- (b) En déduire que $T\mathbb{T}^2 \simeq \mathbb{T}^2 \times \mathbb{R}^2$.
- (c) Plus généralement, montrez que l'espace tangent d'une variété de dimension n est trivial si et seulement s'il existe n champs de vecteurs partout non nuls et linéairement indépendants en chaque point.

Exercice 2. On définit la *n*-sphère par $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^n x_i^2 = 1\}.$

- (a) Utiliser le théorème des fonctions implicites pour montrer que \mathbb{S}^n est une variété lisse de dimen-
- (b) Montrer que $T\mathbb{S}^n \simeq \{(x,y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid |x| = 1, \langle x,y \rangle = 0\}.$
- (c) Donner un difféomorphisme explicite entre $T\mathbb{S}^{n-1}$ et $\{z\in\mathbb{C}^n\mid \sum_{j=1}^n z_j^2=1\}$. (d) On note $X\wedge Y$ le produit vectoriel dans \mathbb{R}^3 . Montrer que, pour $X_p,Y_p\in T_p\mathbb{S}^2$, $\omega_p(X_p,Y_p)=\frac{1}{2}(x_p^2+y_p^2)$ $\langle p, X_p \wedge Y_p \rangle$ définit une 2-forme fermée non dégénérée sur \mathbb{S}^2 .

Exercice 3 (Construction de fibré vectoriel). \bigstar Soit M une variété lisse munie d'un recouvrement ouvert $M = \bigcup_{i \in I} U_i$ et soient $\psi_{ij} : U_i \cap U_j \to \operatorname{GL}(k,\mathbb{R})$ des applications lisses satisfaisant la condition $de \ cocycle$

$$\psi_{ik}(x) = \psi_{ij}(x) \cdot \psi_{jk}(x) \qquad \forall x \in U_i \cap U_j \cap U_k,$$
 (cc)

(en particulier, $\psi_{ii}(x) = \text{Id et } \psi_{ii}(x) = \psi_{ij}(x)^{-1}$).

(a) Utiliser ces applications ψ_{ij} pour construire un fibré vectoriel E de rang k sur M avec ces cartes de transition.

Indication: considérer l'ensemble $\bigsqcup_i \{(i,x,v) \mid i \in I, x \in U_i, v \in \mathbb{R}^k\}$ et quotienter par une relation adéquate.

- (b) Montrer que si l'on se donne un autre système de fonctions de transition $\widetilde{\psi}_{ij}: U_i \cap U_j \to \mathrm{GL}(k,\mathbb{R})$ satisfaisant (cc), le fibré vectoriel obtenu \widetilde{E} est isomorphe (comme fibré) à E si et seulement s'il existe des applications $h_i: U_i \to \mathrm{GL}(k,\mathbb{R})$ telles que $\widetilde{\psi}_{ij}(x) = h_i(x)^{-1} \cdot \psi_{ij}(x) \cdot h_j(x)$, $\forall x \in U_i \cap U_j$.
- (c) Donner la trivialisation et les cartes de transition du fibré dual E^* en fonction de celles de E.

Exercice 4. Soit M une variété et $X, Y, Z \in \Gamma(TM)$ trois champs de vecteurs.

- (a) Montrer que si [X, W] = 0 pour tout $W \in \Gamma(TM)$ alors $X \equiv 0$.
- (b) Montrer que $\phi_*[X,Y] = [\phi_*X,\phi_*Y]$ pour tout $\phi \in \text{Diffeo}(M)$.
- (c) En déduire l'identité de Jacobi [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0.
- (d) Notons $\phi_t^X, \phi_t^Y \in \text{Diffeo}(M)$ les flots respectifs de X et Y. Montrer que ϕ_t^X et ϕ_s^Y commutent pour tout t, s assez petits si et seulement si [X, Y] = 0.

Exercice 5. Soit M une variété et $X \in \Gamma(TM)$ un champ de vecteurs. Nous allons démontrer la formule de Cartan:

$$\mathcal{L}_X = d \circ \iota_X + \iota_X \circ d.$$

- (a) Montrer qu'il suffit d'établir la formule de Cartan sur les 0-formes (grâce à la règle de Leibniz).
- (b) Démontrer la formule de Cartan sur les 0-formes.
- (c) Soient $\alpha \in \Gamma(T^*M)$ une 1-forme et $X, Y \in \Gamma(TM)$. Montrer que $d\alpha(X, Y) = X.\alpha(Y) Y.\alpha(X) X.\alpha(Y) Y.\alpha(X) = X.\alpha(Y) Y.\alpha(X) X.\alpha(Y) X.\alpha$ $\alpha([X,Y]).$

2 DEVOIR 2

Exercice 6 (*Théorème de Frobenius*). $\bigstar \bigstar$ Soit $U \subset \mathbb{R}^n$ un ouvert. Nous allons montrer ce qui suit : soit $D \subset TU$ un sous-fibré de rang non nul k < n. Pour tout $p \in U$, il existe une sous-variété $N \subset U$ telle que $p \in N$ et $T_p N = D_p$ si et seulement si

$$\forall X, Y \in \Gamma(D), \quad [X, Y] \in \Gamma(D). \tag{*}$$

- (a) Montrer que (*) est une condition nécessaire.
- (b) Soient $X_1, \dots, X_k \subset \Gamma(D)$ un repère local. Utiliser (*) pour construire un repère local $Y_1, \dots, Y_k \in$ $\Gamma(D)$ tel que $[Y_i, Y_j] \equiv 0$ pour tous i, j.
- (c) Conclure.

2. Contexte complexe

Exercice 7. \bigstar Soit (M, J) une variété presque complexe.

- (a) Montrer que le tenseur de Nijenhuis $N_J(X,Y) = \frac{1}{4}([JX,JY] J[JX,Y] J[X,JY] [X,Y])$ est bien un tenseur (c'est-à-dire $\mathcal{C}^{\infty}(M)$ -linéaire).
- (b) Montrer que $T^{1,0}M$ est stable par crochet de Lie si et seulement si N_I s'annule identiquement.
- (c) En déduire que, pour toute structure presque complexe sur une variété M de dimension (réelle) $2, T^{1,0}M$ est stable par crochet de Lie.

Exercice 8. Soit (M,J) une variété complexe (c'est-à-dire que J est intégrable). Montrer que $T^{1,0}M$ est (naturellement) un fibré vectoriel holomorphe au-dessus de M.

Exercice 9. Soit (M, J) une variété complexe.

- (a) Montrer que $\overline{\partial \alpha} = \overline{\partial} \overline{\alpha}$.
- (b) En déduire qu'une (p,p)-forme réelle $\alpha \in \mathcal{A}^{p,p}(M) \cap \mathcal{A}^{2p}(M)$ est $\bar{\partial}$ -fermée (resp. exacte) si et seulement si elle est ∂ -fermée.
- (c) Formuler les lemmes de Poincaré pour ∂ et pour $\bar{\partial}$.

Exercice 10. \star Soit $f: M \to N$ une application holomorphe entre variétés complexes. Montrer que si α est une (p,q)-forme sur N, alors $f^*\alpha$ est une (p,q)-forme sur M. Donner un exemple où cela échoue si f n'est pas holomorphe. En déduire que f induit un homomorphisme

$$f^*: H^{p,q}_{\bar\partial}(N) \to H^{p,q}_{\bar\partial}(M)$$

défini par $f^*[\alpha] = [f^*\alpha]$ pour $\alpha \in \mathcal{A}^{p,q}(N)$ avec $\bar{\partial}\alpha = 0$.

Exercice 11. $\bigstar \bigstar$ Considérons l'application naturelle $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ définissant \mathbb{P}^n . Soit $\alpha \in$ $\mathcal{A}^{p,0}(\mathbb{P}^n)$ une forme $\bar{\partial}$ -fermée (c'est-à-dire une p-forme holomorphe).

- (a) Montrer que $\pi^*\alpha$ s'étend en une forme $\bar{\partial}$ -fermée $\beta \in \mathcal{A}^{p,0}(\mathbb{C}^{n+1})$.
- (b) Montrer que β est homogène (c'est-à-dire que pour $\lambda \in \mathbb{C}^*$, si l'on note par $\gamma_{\lambda}(z) = \lambda z$ la dilatation de \mathbb{C}^{n+1} , alors $\gamma_{\lambda}^*\beta = \beta$).
- (c) En écrivant $\beta = \sum_{I} f_{I}(z) dz_{I}$, montrer que cela implique $f \equiv 0$ sur \mathbb{C}^{n+1} . (d) Conclure que $H_{\bar{\partial}}^{p,0}(\mathbb{P}^{n}) = 0$ si p > 0.

Exercice 12. Soit M une variété complexe compacte simplement connexe. Montrer que $H^{1,0}(M) = 0$. Indication : étant donnée une 1-forme holomorphe α , on l'intègre le long de chemins à point de départ fixé afin de définir une application holomorphe $f: X \to \mathbb{C}$ avec $df = \alpha$.

Exercice 13. Soit (M, J) une variété complexe. Pour toute 2-forme réelle J-invariante $\psi \in \mathcal{A}^{1,1}(M) \cap \mathcal{A}^{1,1}(M)$ $\mathcal{A}^2(M)$, vérifier que $b_{\psi} \in \Gamma((T^*M)^{\otimes 2})$, défini par

$$b_{\psi}(X,Y) = \psi(X,JY),$$

est bilinéaire, J-invariant et symétrique. On dit que ψ est positive si b_{ψ} est définie positive en chaque point.

- (a) Sur \mathbb{C}^n , montrer que $\omega := \frac{i}{2} \sum_{j=1}^n dz_j \wedge d\bar{z}_j$ est positive ; en particulier que b_ω est la métrique standard sur $\mathbb{C}^n \simeq \mathbb{R}^{2n}$.
- (b) Montrer que $\omega = \frac{1}{2} \mathrm{i} \partial \bar{\partial} r^2$ pour $r^2 = \sum_{j=1}^n |z_j|^2$.
- (c) Plus généralement, pour un ouvert $U \subset \mathbb{C}^n$, vérifier que si $f \in \mathcal{C}^2(U,\mathbb{R})$ est une fonction strictement convexe, alors $i\partial \bar{\partial} f$ est positive sur U.

Exercice 14. \bigstar Soit $E \to M$ un fibré vectoriel complexe de rang k sur M, dont les fonctions de transition par rapport à un recouvrement ouvert $(U_{\alpha})_{\alpha}$ de M sont $(g_{\alpha\beta})_{\alpha,\beta}$. Montrer qu'une section $\sigma: M \to E$ de E peut être identifiée à une famille $(\sigma_{\alpha})_{\alpha}$ d'applications lisses $\sigma_{\alpha}: U_{\alpha} \to \mathbb{C}^k$ satisfaisant $\sigma_{\alpha} = g_{\alpha\beta} \, \sigma_{\beta} \, \operatorname{sur} \, U_{\alpha} \cap U_{\beta}.$

DEVOIR 2 3

Exercice 15 (Le fibré tautologique et le fibré hyperplan). $\bigstar \bigstar$ Soit L le fibré en droites complexes $\pi: L \to \mathbb{P}^n$ dont la fibre L_x au-dessus d'un point $x \in \mathbb{P}^n$ est la droite complexe x dans \mathbb{C}^{n+1} . Soit L^* le fibré dual de L.

- (i) Montrer que L est un fibré en droites holomorphe (indication : utiliser les transitions locales) et montrer que L n'admet pas de section holomorphe non triviale.
- (ii) Pour tout $\alpha \in \mathbb{C}^{n+1} \setminus \{0\}$, montrer que la restriction à L_x permet de définir une section s_α de L^* . En conclure que l'espace des sections holomorphes globales de L^* est de dimension au moins n+1. Quel est le lieu d'annulation de s_α dans \mathbb{P}^n ? Étant donné $k \geq 0$, interpréter tout polynôme homogène de degré k sur \mathbb{C}^{n+1} comme une section de $(L^*)^{\otimes k}$.

Exercice 16. \bigstar Soit $\pi: E \to M$ un fibré vectoriel holomorphe de rang r. Pour un repère local de sections holomorphes s_1, \ldots, s_k sur $U \subset M$, on définit $\bar{\partial}_E : \Gamma(\Lambda^{p,q}U \otimes E) \to \Gamma(\Lambda^{p,q+1}U \otimes E)$, par

$$\bar{\partial}_E \left(\sum_{j=1}^k \alpha_j \otimes s_j \right) = \sum_{j=1}^k \bar{\partial} \alpha_j \otimes s_j.$$

- (a) Montrer que $\bar{\partial}_E$ ne dépend pas du repère choisi et s'étend en un opérateur bien défini $\bar{\partial}_E$: $\Gamma(\Lambda^{p,q}M\otimes E)\to\Gamma(\Lambda^{p,q+1}M\otimes E)$.
- (b) Montrer que $\bar{\partial}_E^2 = 0$.
- (c) Quel groupe de cohomologie associé à ce complexe coïncide avec l'espace des sections holomorphes globales ?