EXERCISES 4

Exercises for you to practice, think, and read something - no need to return.

1. Sheaves and Čech Cohomology

Exercise 1. Let $\mathscr{A}_{M}^{p,q}$ be the sheaf of smooth (p,q)-forms on a compact complex manifold M. Show that $\check{H}^{i}(M,\mathscr{A}_{M}^{p,q})=0$ for all i>0.

Exercise 2. Let $N \subset M$ be a complex submanifold and \mathscr{F} a sheaf over N. Show that $U \mapsto \mathscr{F}_N(U) := \mathscr{F}(U \cap N)$ defines a sheaf over M.

Exercise 3. Verify the following properties regarding sheafification:

- (1) Check that sheafification of a presheaf is a sheaf.
- (2) On a complex manifold, check that the sheafification of the image of $\exp(2\pi i \bullet) : \mathcal{O} \to \mathcal{O}^*$ is \mathcal{O}^* .

Exercise 4. Let M be a compact complex manifold.

- (1) Show that $\check{H}^1(M, \mathcal{O}^*)$ encodes the isomorphic classes of holomorphic line bundles on M.
- (2) Show that

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{e^{2\pi i}} \mathcal{O}^* \to 1$$

is a short exact sequence of sheaves, and check that it induces the following long exact sequence

$$0 \longrightarrow \check{H}^0(M,\mathbb{Z}) \longrightarrow \check{H}^0(M,\mathcal{O}) \longrightarrow \check{H}^0(M,\mathcal{O}^*) \longrightarrow \underbrace{\check{\delta}^*}_{\delta^*}$$

$$\longrightarrow \check{H}^1(M,\mathbb{Z}) \longrightarrow \check{H}^1(M,\mathcal{O}) \longrightarrow \check{H}^1(M,\mathcal{O}^*) \longrightarrow \underbrace{\check{\delta}^*}_{\delta^*}$$

$$\longrightarrow \check{H}^2(M,\mathbb{Z}) \longrightarrow \check{H}^2(M,\mathcal{O}) \longrightarrow \check{H}^2(M,\mathcal{O}^*) \longrightarrow \cdots$$

(3) Show that the composition of the following maps

$$\check{H}^1(M,\mathcal{O}^*) \xrightarrow{\delta^*} \check{H}^2(M,\mathbb{Z}) \hookrightarrow \check{H}^2(M,\mathbb{R}) \simeq H^2_{dR}(M,\mathbb{R})$$

corresponds to the first Chern class of holomorphic line bundles.

Exercise 5 (Dolbeault theorem). Let M be a compact complex manifold and let E be a holomorphic vector bundle on M. Denote by Ω^p the sheaf of holomorphic p-forms on M, and $\Omega^p(E)$ the sheaf of E-valued holomorphic p-forms on M. Prove that the Čech cohomology group $\check{H}^q(M,\Omega^p(E))$ is isomorphic to the Dolbeault cohomology group $H^{p,q}(M,E)$.

Exercise 6. Let Ω^p be the sheaf of holomorphic p-forms over \mathbb{P}^n . Show that

$$\check{H}^q(\mathbb{P}^n, \Omega^p) \simeq \begin{cases} \mathbb{C} & \text{if } q = p \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 7. Let $M = \mathbb{P}^n$ and $p, q \in M$ distinct points on M. Let $\mathcal{O}(-p-q)$ denote the sheaf of holomorphic functions on M vanishing at both p and q. Show that there is a short exact sequence of sheaves

$$0 \to \mathcal{O}(-p-q) \to \mathcal{O} \to \mathbb{C}_p \oplus \mathbb{C}_q \to 0$$

where the sheaves on the right-hand side should be carefully defined. Show that the map $\check{H}^0(M, \mathcal{O}) \to \check{H}^0(M, \mathbb{C}_p \oplus \mathbb{C}_q)$ is not surjective and conclude that $\check{H}^1(M, \mathcal{O}(-p-q)) \neq 0$.

Exercise 8. Show that any holomorphic line bundle on a disk is trivial. Deduce that any holomorphic line bundle on \mathbb{P}^1 is of the form $\mathcal{O}(n)$ for some integer n.

Exercise 9. Check that $\check{H}^q(\mathbb{C}^n, \mathcal{O}) = 0$ and $\check{H}^q(\mathbb{C}^n, \mathbb{Z}) = 0$ for q > 0. Using the exponential sheaf short exact sequence, deduce that $\check{H}^q(\mathbb{C}^n, \mathcal{O}^*) = 0$ for q > 0. Then conclude that an analytic hypersurface in \mathbb{C}^n is the zero locus of an entire function.

1

2 EXERCISES 4

2. Some analysis

Some references for you:

- Gilbarg-Trudinger, Elliptic partial differential equations of second order
- Aubin, Some Nonlinear Problems in Riemannian Geometry

Exercise 10. Let (M, J, ω) be an *n*-dimensional compact Kähler manifold. For any function $\varphi \in C^2(M)$, we define

$$\Delta_{\omega}\varphi := \sum_{1 < \alpha, \beta < n} g^{\alpha\bar{\beta}} \frac{\partial^2 \varphi}{\partial z_{\alpha} \partial \bar{z}_{\beta}}$$

where $\omega = \sum_{loc} \sum_{1 \leq \alpha, \beta \leq n} g_{\alpha\bar{\beta}} i dz_{\alpha} \wedge d\bar{z}_{\beta}$.

- (1) Show that Δ_{ω} is a second-order elliptic operator
- (2) Show that $\Delta_{\omega} = -c\Delta_{\bar{\partial}}$ for some c > 0.
- (3) Show that

$$\Delta_{\omega}\varphi = \frac{n\mathrm{i}\partial\bar{\partial}\varphi \wedge \omega^{n-1}}{\omega^n}.$$

(4) Show that if φ is a C^2 function such that $\Delta_{\omega}\varphi = 0$, then φ is constant.

Exercise 11. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $\varphi \in C^2(\Omega)$. Show that if $\Delta \varphi \geq 0$ (subharmonic), then φ satisfies the sub-mean value inequality:

$$\varphi(x) \le \frac{1}{|B(x,r)|} \int_{B(x,r)} \varphi(y) dy$$

for all $x \in \Omega$ and $0 < r < \operatorname{dist}(x, \partial \Omega)$.

Exercise 12. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain.

- (1) Show that for any $f \in C^{k,\alpha}(\Omega)$, f is a C^k function.
- (2) Show that $C^{k,\alpha}(\Omega)$ is complete (i.e. A Cauchy sequence in $C^{k,\alpha}(\Omega)$ is a converging sequence in $C^{k,\alpha}(\Omega)$).
- (3) Suppose that $(f_k)_{k\in\mathbb{N}}$ is a sequence in $C^{k,\alpha}(\Omega)$. Assume that there exist M>0 such that $\|f_k\|_{C^{k,\alpha}(\Omega)}\leq M$ for all k. Using Arzela–Ascoli theorem to show that for any $(\ell,\beta)\in\mathbb{N}\times(0,1)$ such that $\ell+\beta< k+\alpha$, there exists a subsequence $(f_{k_j})_{j\in\mathbb{N}}$ converging in $C^{\ell,\beta}(\Omega)$.

Exercise 13. Let Ω be a bounded domain in \mathbb{R}^n .

(1) (Sobolev inequality) Show that for $1 \leq p < n$, there exists a constant $C_S > 0$ such that for all $f \in C_c^{\infty}(\Omega)$,

$$||f||_{L^{\frac{np}{n-p}}(\Omega)} \le C_S ||\nabla f||_{L^p(\Omega)}.$$

(2) (Poincaré inequality) Show that for all $1 \leq p < +\infty$, there exists a constant $C_P > 0$ such that for all $f \in C_c^{\infty}(\Omega)$,

$$||f||_{L^p(\Omega)} \le C_P ||\nabla f||_{L^p(\Omega)}$$

(3) (Poincaré–Wirtinger inequality) Show that for all $1 \le p < +\infty$, there exists a constant $C'_P > 0$ such that for all $f \in C^{\infty}(\Omega)$,

$$||f - f_{\Omega}||_{L^p(\Omega)} \le C_P' ||\nabla f||_{L^p(\Omega)}$$

where $f_{\Omega} := \frac{1}{|\Omega|} \int_{\Omega} f(x) dx$.

(4) Think about the version of the above inequalities on compact Riemannian manifolds.

Exercise 14 (Elliptic regularity theory). Let (M, g) be a compact oriented Riemannian manifold and let L be a second-order elliptic operator with smooth coefficients (not necessarily self-adjoint). Show that for all $(k, \alpha) \in \mathbb{N} \times (0, 1)$,

$$L: (\ker L)^{\perp_{L^2}} \cap C^{k+2,\alpha}(M) \to (\ker L^*)^{\perp_{L^2}} \cap C^{k,\alpha}(M)$$

is an isomorphism, where L^* is the adjoint operator of L, i.e. $\int L(f_1)f_2 \, d\text{vol}_q = \int_M f_1 L^*(f_2) \, d\text{vol}_q$.