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Weighted Extremal Kähler metrics

Let X be a compact Kähler manifold, let T ⊂ Autr (X) be a maximal compact torus, and
let Ω = (ω,mΩ) be a T -equivariant Kähler form where mΩ : X ! t∨ is a moment map
for ω.
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Weighted Extremal Kähler metrics

Let X be a compact Kähler manifold, let T ⊂ Autr (X) be a maximal compact torus, and
let Ω = (ω,mΩ) be a T -equivariant Kähler form where mΩ : X ! t∨ is a moment map
for ω.
⋆ Autr (X) is the identity component of the subgroup of automorphisms acting trivially
on the Albanese torus Alb(X) = H0(X ,Ω1

X )
∨/H1(X ,Z).

Its Lie algebra consists of all holomorphic vector fields ξ ∈ H0(X ,TX) such that
α(ξ) = 0 for any holomorphic 1-form α ∈ H0(X ,Ω1

X ).

if X is projective, then Autr (X) ≃ Aut0(X , L)/C∗ for L ! X ample line bundle;

In general, Autr (X) is still a linear algebraic group and Aut0(X)/Autr (X) is a
compact complex torus [Fujiki ’78].
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Weighted Extremal Kähler metrics

Let X be a compact Kähler manifold, let T ⊂ Autr (X) be a maximal compact torus, and
let Ω = (ω,mΩ) be a T -equivariant Kähler form where mΩ : X ! t∨ is a moment map
for ω.

Definition (Lahdili ’19, Inoue ’22)

Let v ,w ∈ C∞(t∨) be two weights such that v ,w > 0 on P := mΩ(X). Then Ω is a
(v ,w)-extremal metric if it is a (v ,w lext)-cscK metric, i.e.

Sv (Ω) = w(mΩ)lext(mΩ)

where Sv (Ω) is the v-weighted scalar curvature while lext is the unique affine function
on t∨ (v-weighted extremal function) determined by the vanishing of the weighted
Futaki invariant. [; Simon’s lectures]
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Weighted Extremal Kähler metrics

Let X be a compact Kähler manifold, let T ⊂ Autr (X) be a maximal compact torus, and
let Ω = (ω,mΩ) be a T -equivariant Kähler form where mΩ : X ! t∨ is a moment map
for ω.

Definition (Lahdili ’19, Inoue ’22)

Let v ,w ∈ C∞(t∨) be two weights such that v ,w > 0 on P := mΩ(X). Then Ω is a
(v ,w)-extremal metric if it is a (v ,w lext)-cscK metric, i.e.

Sv (Ω) = w(mΩ)lext(mΩ)

where Sv (Ω) is the v-weighted scalar curvature while lext is the unique affine function
on t∨ (v-weighted extremal function) determined by the vanishing of the weighted
Futaki invariant. [; Simon’s lectures]

(v ,w) = (1, 1) ; classical cscK and extremal metrics.

w(α) = n + ⟨(log v)′(α), α⟩ ; v -solitons, i.e. RicT
v (Ω) = Ω.

Case v(α) = e2⟨α,ξ⟩ ; gradient Kähler-Ricci solitons Ric(ω) = ω − LJξω.

many others...
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Variational approach

Let Hω := {φ ∈ C∞(X) : ωφ := ω + ddcφ > 0} be the set of Kähler potentials, and
denote by HT

ω those that are T -invariant.

The associated T -equivariant Kähler forms
are given by Ωφ = (ωφ,mΩφ ) where mΩφ := mΩ + dcφ. .

Theorem (Lahdili ’19)

Let v ,w ∈ C∞(t∨) be two weights such that v ,w > 0 on P = mΩ(X). The operator

HT
ω ∋ φ!

(
w(mΩφ )l

ext(mΩφ )− Sv (Ωφ)
)

v(mΩφ )ω
n
φ

admits an Euler-Lagrange functional: the weighted relative Mabuchi functional Mrel
ω,v,w .

Theorem (Chen-Cheng ’21, Apostolov-Jubert-Lahdili ’23, He ’19, Di
Nezza-Jubert-Lahdili ’24, Han-Liu ’24)

Under the aforementioned setting,

the existence of a (v ,w)-extremal Kähler metric in {ω} implies that Mrel
ω,v,w is

coercive on HT
ω , i.e. there exist δ > 0,C > 0 such that Mrel

ω,v,w ≥ δJω,T − C;

if v is further log-concave on P, the converse holds as well.
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=

∫
X
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Main Result

Theorem

Let (X , ωX ) be a compact Kähler space with log terminal singularities, and suppose
given:

a compact torus T ⊂ Autr (X) preserving ωX ;

two smooth positive weights v ,w on the moment polytope P;

a T -equivariant resolution of singularities π : Y ! X , assumed to be of Fano type;

a sequence of T -invariant Kähler forms ωj on Y converging smoothly to π∗ωX and
such that ωj ≥ (1 − εj )π

∗ωX with εj ! 0.

If the relative weighted Mabuchi energy Mrel
ωX ,v,w is coercive on E1,T

ω , then so is Mrel
ωj ,v,w

on HT
ωj

for all j large enough, with uniform coercivity constants.

E1,T is the space of T-invariant finite energy potentials, and it is given by the
T -invariant elements in the metric completion of Hω with respect to a metric d1.
Note that cωJω,T (φ) ≤ d1(φ, 0) ≤ CωJω,T (φ) + Aω for any φ ∈ E1,T

ω,0 .

Corollary

Assume that X is smooth, T is a maximal torus and v is log-concave. If {ωX} contains
a (v ,w)-weighted extremal Kähler metric, then so does {ωj} for all j large enough.
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Fano type assumption

Definition

We say that π : Y ! X is of Fano type if there exists a singular metric ϕ on −KY such
that

the curvature current ddcϕ is π-semipositive;

ϕ has trivial multiplier ideal sheaf.

⇐⇒ There exists a q-psh function f (i.e. locally sum of a psh function and a
smooth function) such that the measure ν̂Y := e−2fωn

Y has finite total mass and
Ric(ωY ) + ddc f is π-semipositive;
If there exists an effectiveQ-divisor B on Y such that

−(KY + B) is π-ample;
the pair (Y , B) is klt,

then π : Y ! X is of Fano type. If X ,Y are projective then the reverse holds.

Note: if X is smooth then the blowup along any submanifold is of Fano type.

Question: When does a resolution of Fano type exist? Examples:

dimX = 2;

dimX = 3, X with Gorenstein quotient singularities;

X with isolated singularities locally isomorphic to an affine cone over a Fano
manifold.

any crepant resolution.
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Some literature

The main Corollary is related to (X smooth)

Arezzo-Pacard ’06: blowups of points, X with no nonzero holomorphic vector
fields.

Arezzo-Pacard ’09: blowups of a large and suitable collection of points, for cscK
metrics.

Arezzo-Pacard-Singer ’11: blowup of points, conditions involving the
automorphism group, for extremal metrics.

Székelyhidi ’12: reduced the conditions in APS11 to a stability condition.

Hallam ’23: generalized Szé12 to the weighted case.

Székelyhidi ’15, Dervan-Sektnan ’21: relate the existence of extremal metric on
the blow-up at a point to K-stability.

Seyyedali-Székelyhidi ’20: blowup of T -invariant submanifolds of codimension
larger than 2, extremal metrics.

Moreover, for X singular,

Székelyhidi ’24: independently obtain the existence of cscK metrics on the
resolution of a KE klt space with no nontrivial holomorphic vector fields.

Pan-Tô ’24: coercivity of Mrel
ωX ,v,w on E1,T

ω implies existence of singular
(v ,w)-weighted extremal Kähler metrics when T is maximal, v is log-concave and
the variety admits a T -equivariant resolution of singularities of Fano type.
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Advantages and disadvantages

The Main Advantage with respect to previous works on the topic is the use of a
variational approach, with pluripotential-theoretical techniques, avoiding any type of
gluing.

; The strategy extends to

general modifications of Fano type (and not only blowups);

X with log terminal singularities.

One could wonder what happens when the morphisms is not T -equivariant wrt a
maximal compact torus T ⊂ Autr (X). For instance when π is T -equivariant wrt to a
maximal torus in Autr (Y ) which is not maximal in Autr (X).
By [Apostolov-Jubert-Lahdili] Mrel

ωX ,v,w should then be assumed to be coercive modulo
(the identity component) of the centralizer AutTr (X) of T in Autr (X), and the conclusion
should be (under appropriate assumptions) that Mrel

ωj ,v,w is coercive modulo

AutTr (Y ) = TC.
The main disadvantage of the approach presented is that it does not cover this case.
However, the problem is obstructed in such case [Dervan-Sektnan ’21, Hallam ’23].
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Strong topology
of ω-psh functions
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The set PSH(X , ω)

Definition

Let ω ≥ 0 such that Vω :=
∫

X ω
n > 0.

The elements of the set

PSH(X , ω) :=
{

u q − psh : ωu := ω + ddcu ≥ 0
}
⊂ L1(X)

are called ω-psh functions.

When {ω} = c1(L) is integral they play the role of singular metrics on L ! X .

They are naturally endowed with the weak (i.e. L1) topology.

If {uj}j ∈ PSH(X , ω)N converges to u ∈ PSH(X , ω), then
supX uj ! supX u;

PSH(X , ω) ∋ vj :=
(
supk≥j uk

)∗
↘ u, where the star indicates the upper

semicontinuous regularization.

When ω > 0 then PSH(X , ω) ⊃ Hω .
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The Monge-Ampère operator & the Monge-Ampère energy

Lemma

The Monge-Ampère operator C∞(X) ∋ φ −! MAω(φ) := ωn
φ admits a

Euler-Lagrange functional Eω : C∞(X) ! R, normalized by Eω(0) = 0, called
Monge-Ampère energy wrt ω.

In formula,

Eω(φ)− Eω(ψ) =
1

n + 1

n∑
j=0

∫
X
(φ− ψ)ωj

φ ∧ ωn−j
ψ .

Bedford-Taylor ’82: (PSH(X , ω) ∩ L∞(X))n ∋ (φ1, . . . , φn) −! ωφ1 ∧ · · · ∧ ωφn ,
which is continuous along monotone sequences and the total mass is fixed
(= Vω). And the Monge-Ampère energy extends to PSH(X , ω) ∩ L∞(X).

As Eω : PSH(X , ω) ∩ L∞(X) ! R is monotone increasing ("E′
ω > 0") and

continuous along monotone sequences, it extends to PSH(X , ω) by

Eω(u) := inf {Eω(φ) : φ ≥ u, φ ∈ PSH(X , ω) ∩ L∞(X)} ∈ R ∪ {−∞}.

Some properties of Eω :
Eω(φ + c) = Eω(φ) + cVω for any c ∈ R and any φ ∈ PSH(X , ω);
It is continuous along monotone sequences. In particular
Eω(u) = limk!+∞ Eω (max(u,−k));
It is upper semicontinuous: lim supj!+∞ Eω(uj ) ≤ Eω(u) if uj ! u.

Proof Let vj :=
(
supk≥j uk

)∗
. Then Eω(uj ) ≤ Eω(vj ) ↘ Eω(u).
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The space E1(X , ω)

Definition

The space of ω-psh functions of finite energy is defined as

E1
ω := {u ∈ PSH(X , ω) |Eω(u) > −∞} ,

endowed with a strong topology given as the coarsest refinement of the weak topology
in which Eω : E1

ω ! R becomes continuous.
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ω := {u ∈ PSH(X , ω) |Eω(u) > −∞} ,

endowed with a strong topology given as the coarsest refinement of the weak topology
in which Eω : E1

ω ! R becomes continuous.

Examples:

Assume n = 1, then u ∈ E1
ω iff

∫
X u ωu > −∞. This is equivalent to∫

X du ∧ dcu < +∞, i.e. E1
ω = PSH(X , ω) ∩ W 1,2(X).

In higher dimension, you get Eω(u) ≤ supX u −
∫

X du ∧ dcu ∧ ωn−1. Hence
functions in E1

ω have gradient in L2(X);

Let φ ∈ PSH(X , ω), φ ≤ −1. Then −(−φ)ε ∈ E1
ω if ε < 1

n+1 .

If u ∈ E1
ω , v ∈ PSH(X , ω), v ≥ u then v ∈ E1

ω . In particular max(u,−k) ∈ E1
ω for

any u ∈ PSH(X , ω), and u ∈ E1
ω if and only if Eω (max(u,−k)) > −C uniformly.
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endowed with a strong topology given as the coarsest refinement of the weak topology
in which Eω : E1

ω ! R becomes continuous.

Theorem (Berman-Boucksom-Guedj-Zeriahi ’13)

The mixed Monge-Ampère operator admits a unique strongly continuous
extension to E1

ω . In particular the Monge-Ampère operator is strongly continuous.

For all u0, u1, . . . , un ∈ E1
ω , u0 ∈ L1(ωu1 ∧ ωun ) and

(u0, u1, . . . , un) −!

∫
X

u0 ωu1 ∧ · · · ∧ ωun

is strongly continuous.
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Darvas Metric

Definition (Darvas ’15)

The Darvas metric on E1
ω is defined as

d1(u, v) := Eω(u) + Eω(v)− 2 Eω (Pω(u, v))

where Pω(u, v) := (sup {w ∈ PSH(X , ω) : w ≤ min(u, v)})∗ ∈ E1
ω .

One immediately have |Eω(u)− Eω(v)| ≤ d1(u, v), and it is possible to prove that

d1(u, v) ≈ I1(u, v) :=
∫

X
|u − v | (MAω(u) + MAω(v)) .

Hence the induced metric topology coincides with the strong topology!(
E1
ω , d1

)
is a geodesic metric space. Indeed any two points in E1

ω can be joined by
a unique psh geodesic (ut )t∈[0,1], which is a constant speed geodesic for d1, i.e.
d1(ut , us) = |t − s|d1(u0, u1).

The convergence uj ! u in E1
ω is equivalent to the existence of a sequence

wk ∈ E1
ω ,wk ≤ ujk such that wk ↗ u [This is called "quasi-monotone

convergence"].
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Action by automorphisms
As the neutral component Aut0(X) acts trivially on cohomology, for each g ∈ Aut0(X)
there exists a unique τg ∈ C∞(X) such that

g∗ω = ω + ddcτg , Eω(τg) = 0.

For each u ∈ PSH(X , ω), we set ug := τg + g∗u. ; ω + ddcug = g∗ (ωu).

Proposition

The right-action of Aut0(X) on PSH(X , ω) restricts to an isometry on E1
ω , which

preserves the Monge-Ampère energy. When ω > 0, this action is further proper, i.e.
{g ∈ Aut0(X) : d1(ug , u) ≤ C} is compact for any u ∈ E1

ω and C > 0.

Proof. Let u ∈ E1
ω ∩ L∞(X). Then

(n + 1)Eω(ug) = (n + 1)
(

Eω(ug) − Eω(τg)
)
=

n∑
j=0

∫
X

g∗u g∗(ωu)
j ∧ g∗

ω
n−j = (n + 1)Eω(u).

This extends to u ∈ E1
ω by approximation. Thus ug ∈ E1

ω and the action E1
ω × Aut0(X) ! E1

ω is
strongly continuous. As u ! ug = τg + g∗u is monotone increasing, Pω(ug , vg) = Pω(u, v)g .
Hence the action is an isometry on E1

ω .
Finally, assume ω > 0. Since Aut0(X) acts by isometries, we can assume u = 0. By closedness of
{g ∈ Aut0(X) : d1(τg , 0) ≤ C}, it is enough to show that any sequence gj such that
d1(τgj , 0) ≤ C admits a convergent subsequence in Aut(X). By [Darvas-Lu ’20] ∆ωτgj ≤ C′.
Hence gj : X ! X is uniformly Lipschitz wrt (the Riemannian metric induced by) ω. By Ascoli, after
passing to a subsequence, gj ! g uniformly. The map g is then holomorphic. Similarly, since
d1(τg , 0) = d1(0, τg−1 ), g−1

j converges uniformly to a holomorphic map h : X ! X . Now

gj g
−1
j = g−1

j gj = Id yields gh = hg = Id.
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Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
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Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper. Note: the action is proper is ω ≥ 0 and G is a reductive subgroup of Autr (X)
(see Remark 1.9 of the paper).
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Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Antonio Trusiani Extremal metrics on resolutions



Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Definition

We say that M is coercive modulo G if there exists δ > 0,C > 0 such that
M ≥ δJG − C on F , where JG(u) := infg∈G J(ug) := infg∈G

(∫
X ugωn − Eω(ug)

)
.

Antonio Trusiani Extremal metrics on resolutions



Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Definition

We say that M is coercive modulo G if there exists δ > 0,C > 0 such that
M ≥ δJG − C on F , where JG(u) := infg∈G J(ug) := infg∈G

(∫
X ugωn − Eω(ug)

)
.

Lemma

M is coercive if and only if there exists δ′ > 0,C′ > 0 such that
M(u) ≥ δ′d1,G(u, 0)− C′ for any u ∈ F0 := {v ∈ F ; Eω(v) = 0}.

Antonio Trusiani Extremal metrics on resolutions



Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Definition

We say that M is coercive modulo G if there exists δ > 0,C > 0 such that
M ≥ δJG − C on F , where JG(u) := infg∈G J(ug) := infg∈G

(∫
X ugωn − Eω(ug)

)
.

Lemma

M is coercive if and only if there exists δ′ > 0,C′ > 0 such that
M(u) ≥ δ′d1,G(u, 0)− C′ for any u ∈ F0 := {v ∈ F ; Eω(v) = 0}.

Proof. Set Tω := supu∈PSH(X,ω)

{
supX u − V−1

ω

∫
X u ωn

}
∈ [0,+∞), and let u ∈ E1

ω such that
Eω(u) = 0.
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Coercivity

Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Definition

We say that M is coercive modulo G if there exists δ > 0,C > 0 such that
M ≥ δJG − C on F , where JG(u) := infg∈G J(ug) := infg∈G

(∫
X ugωn − Eω(ug)

)
.

Lemma

M is coercive if and only if there exists δ′ > 0,C′ > 0 such that
M(u) ≥ δ′d1,G(u, 0)− C′ for any u ∈ F0 := {v ∈ F ; Eω(v) = 0}.

Proof. Set Tω := supu∈PSH(X,ω)

{
supX u − V−1

ω

∫
X u ωn

}
∈ [0,+∞), and let u ∈ E1

ω such that
Eω(u) = 0. Then

J(ug) =

∫
X

ug
ω

n ≤
∫

X
|ug |

(
MAω(ug) + MAω(0)

)
= I1(u

g
, 0) ≈ d1(u

g
, 0),

from which we get JG(u) ≲ d1,G(u, 0).
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Coercivity
Given a closed Lie subgroup G ⊂ Aut0(X), we define d1,G(u, v) := infg∈G d1(ug , v)
on E1

ω × E1
ω . ; quotient pseudometric on E1

ω/G, which is a metric when the action is
proper.
Consider a functional M : F ! R ∪ {+∞} defined on a subset F ⊂ E1

ω , such that
both M and F are translation invariant, and assume that F is G-invariant.

Definition

We say that M is coercive modulo G if there exists δ > 0,C > 0 such that
M ≥ δJG − C on F , where JG(u) := infg∈G J(ug) := infg∈G

(∫
X ugωn − Eω(ug)

)
.

Lemma

M is coercive if and only if there exists δ′ > 0,C′ > 0 such that
M(u) ≥ δ′d1,G(u, 0)− C′ for any u ∈ F0 := {v ∈ F ; Eω(v) = 0}.

Proof. Set Tω := supu∈PSH(X,ω)

{
supX u − V−1

ω

∫
X u ωn

}
∈ [0,+∞), and let u ∈ E1

ω such that
Eω(u) = 0. Then

J(ug) =

∫
X

ug
ω

n ≤
∫

X
|ug |

(
MAω(ug) + MAω(0)

)
= I1(u

g
, 0) ≈ d1(u

g
, 0),

from which we get JG(u) ≲ d1,G(u, 0). On the other hand

d1(u
g
, 0) ≤ d1(u

g
, sup

X
ug) + d1(sup

X
ug

, 0) = Vω sup
X

ug + Vω|sup
X

ug | − Eω(ug) = 2Vω sup
X

ug
,

where we used that supX ug ≥ Eω(ug) = 0. Hence d1(ug , 0) ≤ 2VωTω + 2J(ug).
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Strong convergence
and strong compactness

for varying classes
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.
Set Vj := Vωj ,V := Vω ,Ej := Eωj ,E := Eω , E1

j := E1
ωj
, E1 := E1

ω ,MAj :=

MAωj ,MA := MAω , and d1,j , d1 for the Darvas metrics.
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Rmks:

Since ωj ≤ CωX , this is equivalent to the convergence in PSH(X ,CωX ).

In particular, it is not hard to check that there exists A > 0 such that

sup
X

u − A ≤ V−1
j

∫
X

u ωn
j ≤ sup

X
u

for any u ∈ PSH(X , ωj ). Hence any sequence uj ∈ PSH(X , ωj ) with
∫

X uj ω
n
j

uniformly bounded admits a subsequence ujk that converges weakly to
u ∈ PSH(X , ω). [This follows from the weak compactness of
{u ∈ PSH(X ,CωX ) : |supX u| ≤ C}]
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Antonio Trusiani Extremal metrics on resolutions



Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0.
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. Indeed we know that ũj := uj − supX uj ! ũ := u − supX u.
Moreover

Ej (uj ) − Ej (ũj ) = Vj sup
X

uj −! V sup
X

u = E(u) − E(ũ).

Antonio Trusiani Extremal metrics on resolutions



Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. We can assume uj ≥ −C uniformly. This follows from
uk

j := max(uj ,−k) ! uk := max(u,−k), Ej (uj ) ≤ Ej (max(uj ,−k)) and E(uk ) ↘ E(u).
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. We can assume uj ≥ −C uniformly. Then

Ej (uj ) ≤ Ej
(
(1 − εj )u

)
+

∫
X

(
uj − (1 − εj )u

) (
ωj + (1 − εj )ddcu

)n
.
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. We can assume uj ≥ −C uniformly. Then

Ej (uj ) ≤ Ej
(
(1 − εj )u

)
+

∫
X

(
uj − (1 − εj )u

) (
ωj + (1 − εj )ddcu

)n
.

We have Ej
(
(1 − εj )u

)
! E(u). This easily follows from the smooth convergence ωj ! ω and the

fact that u is bounded, as

Ej
(
(1 − εj )u

)
=

1
n + 1

n∑
k=0

∫
X
(1 − εj )u (ωj + (1 − εj )ddcu)k ∧ ω

n−k
j .
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Setting and Weak Convergence

Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. We can assume uj ≥ −C uniformly. Then

Ej (uj ) ≤ Ej
(
(1 − εj )u

)
+

∫
X

(
uj − (1 − εj )u

) (
ωj + (1 − εj )ddcu

)n
.

We have Ej
(
(1 − εj )u

)
! E(u). Similarly

∫
X u

(
ωj + (1 − εj )ddcu

)n !
∫

X u (ω + ddcu)n.
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Setting and Weak Convergence
Let {ωj}j∈N be a sequence of semipositive, big (1, 1)-forms on X converging smoothly
to a big semipositive form ω. Assume also that ωj ≥ (1 − εj )ω with εj ! 0.

Definition

We say that a sequence {uj}j with uj ∈ PSH(X , ωj ) converges weakly to
u ∈ PSH(X , ω) if uj ! u in L1.

Proposition

For any weakly convergent sequence PSH(X , ωj ) ∋ uj ! u ∈ PSH(X , ω) we have
lim supj!+∞ Ej (uj ) ≤ E(u).

Proof. We can assume uj ≤ 0. We can assume uj ≥ −C uniformly. Then

Ej (uj ) ≤ Ej
(
(1 − εj )u

)
+

∫
X

(
uj − (1 − εj )u

) (
ωj + (1 − εj )ddcu

)n
.

We have Ej
(
(1 − εj )u

)
! E(u). Similarly

∫
X u

(
ωj + (1 − εj )ddcu

)n !
∫

X u (ω + ddcu)n. On
the other hand∫

X
uj

(
ωj + (1 − εj )ddcu

)n
=

∫
X

uj
(
ωj − (1 − εj )ω + (1 − εj )(ω + ddcu)

)n ≤ (1−εj )
n
∫

X
uj (ω+ddcu)n

as uj ≤ 0 and ωj ≥ (1 − εj )ω. The proof concludes setting vj :=
(
supk≥j uk

)∗
and observing

that, by Monotone Convergence,∫
X

uj (ω + ddcu)n ≤
∫

X
vj (ω + ddcu)n !

∫
X

u (ω + ddcu)n
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We first want to prove that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v).
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We first want to prove that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). Set
uk := max(u,−k), vk := max(v ,−k). Then

d1,j (uj , vj ) ≤ d1,j

(
uj , (1 − εj )u

k
)
+ d1,j

(
(1 − εj )u

k
, (1 − εj )v

k
)
+ d1,j

(
(1 − εj )v

k
, vj )

)
.

We claim that lim supj!+∞ RHS ≤ d1(u, uk ) + d1(uk , vk ) + d1(vk , v) k!+∞
−! d1(u, v).
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We first want to prove that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). Set
uk := max(u,−k), vk := max(v ,−k). Then

d1,j (uj , vj ) ≤ d1,j

(
uj , (1 − εj )u

k
)
+ d1,j

(
(1 − εj )u

k
, (1 − εj )v

k
)
+ d1,j

(
(1 − εj )v

k
, vj )

)
.

We claim that lim supj!+∞ RHS ≤ d1(u, uk ) + d1(uk , vk ) + d1(vk , v) k!+∞
−! d1(u, v). Set

uk
j := max

(
uj , (1 − εj )uk

)
. Observe that lim supj!∞ Ej (uk

j ) ≤ E(uk ) as uk
j ! uk weakly.
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:
Let u ∈ E1 ∩ L∞(X). Then E1

j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We first want to prove that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). Set
uk := max(u,−k), vk := max(v ,−k). Then

d1,j (uj , vj ) ≤ d1,j

(
uj , (1 − εj )u

k
)
+ d1,j

(
(1 − εj )u

k
, (1 − εj )v

k
)
+ d1,j

(
(1 − εj )v

k
, vj )

)
.

We claim that lim supj!+∞ RHS ≤ d1(u, uk ) + d1(uk , vk ) + d1(vk , v) k!+∞
−! d1(u, v). Set

uk
j := max

(
uj , (1 − εj )uk

)
. Observe that lim supj!∞ Ej (uk

j ) ≤ E(uk ) as uk
j ! uk weakly. Then

d1,j

(
uj , (1 − εj )u

k
)

≤ d1,j

(
uj , uk

j

)
+d1,j

(
uk

j , (1 − εj )u
k
)

= 2Ej (u
k
j )−Ej (uj )−Ej

(
(1 − εj )u

k
)
.

We deduce lim supj!+∞ d1,j

(
uj , (1 − εj )uk )

)
≤ d1(u, uk ) as uj ! u strongly and

(1 − εj )uk ! uk strongly.
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:
Let u ∈ E1 ∩ L∞(X). Then E1

j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We first want to prove that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). Set
uk := max(u,−k), vk := max(v ,−k). Then

d1,j (uj , vj ) ≤ d1,j

(
uj , (1 − εj )u

k
)
+ d1,j

(
(1 − εj )u

k
, (1 − εj )v

k
)
+ d1,j

(
(1 − εj )v

k
, vj )

)
.

We claim that lim supj!+∞ RHS ≤ d1(u, uk ) + d1(uk , vk ) + d1(vk , v) k!+∞
−! d1(u, v). Set

wk := Pω(uk , vk ). Then

d1,j

(
(1 − εj )u

k
, (1 − εj )v

k
)

≤ d1,j

(
(1 − εj )u

k
, (1 − εj )w

k
)
+d1,j

(
(1 − εj )w

k
, (1 − εj )v

k
)

= Ej

(
(1 − εj )u

k
)
+ Ej

(
(1 − εj )v

k
)
− 2Ej

(
(1 − εj )w

k
)

j!+∞
−! d1(u

k
, vk ).

This proves the claim and concludes the first part of the proof.
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We know that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). It remains to show that
lim inf j!+∞ d1,j (uj , vj ) ≥ d1(u, v).
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Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We know that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). It remains to show that
lim inf j!+∞ d1,j (uj , vj ) ≥ d1(u, v).
As d1,j (uj , vj ) ≤ d1,j (uj , 0) + d1,j (vj , 0) is bounded, we may assume that it converges. Set
wj := Pj (uj , vj ). Using the definition of d1,j one deduce that d1,j (wj , 0) is bounded as well.
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As d1,j (uj , vj ) ≤ d1,j (uj , 0) + d1,j (vj , 0) is bounded, we may assume that it converges. Set
wj := Pj (uj , vj ). Using the definition of d1,j one deduce that d1,j (wj , 0) is bounded as well. Then∫

X wjω
n
j is bounded. By compactness, wj subconverges weakly to w ∈ PSH(X , ω). Note that

E(w) ≥ lim supj!+∞ Ej (wj ) > −∞, and that w ≤ u, v .

Antonio Trusiani Extremal metrics on resolutions



Strong Convergence

Definition

We say that a sequence {uj}j∈N with uj ∈ E1
j converges strongly to u ∈ E1 if it

converges weakly and Ej (uj ) ! E(u).

Examples:

Let u ∈ E1 ∩ L∞(X). Then E1
j ∋ uj := (1 − εj )u ! u strongly.

if u ∈ E1 ∩ L∞(X) and uj ∈ E1
j decreases to u, then uj ! u strongly.

Proposition

If uj , vj ∈ E1
j converge stronlgy to u, v ∈ E1, then d1,j (uj , vj ) ! d1(u, v).

Proof. We know that lim supj!+∞ d1,j (uj , vj ) ≤ d1(u, v). It remains to show that
lim inf j!+∞ d1,j (uj , vj ) ≥ d1(u, v).
As d1,j (uj , vj ) ≤ d1,j (uj , 0) + d1,j (vj , 0) is bounded, we may assume that it converges. Set
wj := Pj (uj , vj ). Using the definition of d1,j one deduce that d1,j (wj , 0) is bounded as well. Then∫

X wjω
n
j is bounded. By compactness, wj subconverges weakly to w ∈ PSH(X , ω). Note that

E(w) ≥ lim supj!+∞ Ej (wj ) > −∞, and that w ≤ u, v .
Since lim inf j!+∞ d1,j (uj , wj ) = lim inf j!+∞

(
Ej (uj ) − Ej (wj )

)
≥ E(u) − E(w) = d1(u, w), and

similarly lim inf j!+∞ d1,j (wj , vj ) ≥ d1(w, v), we get

d1(u, v) ≤ d1(u, w) + d1(w, v) ≤ lim inf
j!+∞

(
d1,j (uj , wj ) + d1,j (wj , vj )

)
= lim inf

j!+∞
d1,j (uj , vj ).
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Strong compactness

Fix a volume form ν on X and denote by

Hj (u) :=
1
2

Ent
(
MAj (u)|ν

)
, H(u) :=

1
2

Ent (MA(u)|ν)

respectively the entropy functions on E1
j and on E1.

Recall: Given two positive measures µ, ν,

Ent(µ|ν) :=
{∫

X f log f dν if dµ = fdν
+∞ otherwise.

It can be expressed as a Legendre transform

Ent(µ|ν) = sup
g∈C0(X)

{∫
X

g dµ− µ(X) log

∫
X

eg dν
}

+ µ(X) log µ(X).

; Ent(·|ν) is convex, lsc on the space of positive measures (wrt the weak
convergence) and Ent(µ|ν) ≥ µ(X) log µ(X)

ν(X)
.

Theorem

Any sequence {uj}j∈N such that supX uj and the entropy Hj (uj ) are both bounded
admits a subsequence that converges strongly to some u ∈ E1.
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admits a subsequence that converges strongly to some u ∈ E1.
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Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.
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Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Proof. By Zeriahi ’01 there exists α > 0, B > 0 such that∫
X

e−αudν ≤ B

for any u ∈ PSH(X , ωj ) ⊂ PSH(X , Cω) with supX u = 0.
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Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Proof. By Zeriahi ’01 there exists α > 0, B > 0 such that∫
X

e−αudν ≤ B

for any u ∈ PSH(X , ωj ) ⊂ PSH(X , Cω) with supX u = 0. For such u we have

−αEj (u) ≤
∫

X
(−αu)MAj (u) ≤ 2Hj (u) + Vj log

∫
e−αudν − Vj log Vj ≤ 2Hj (u) + C

for a uniform constant C.
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Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Lemma

Assume that E1
j ∋ uj ! u ∈ E1 weakly. If Hj (uj ) is bounded, then uj ! u strongly.
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)
for

all u ∈ E1
j and all j ∈ N.

Lemma

Assume that E1
j ∋ uj ! u ∈ E1 weakly. If Hj (uj ) is bounded, then uj ! u strongly.

Lemma

Pick a convergent sequence fj ! f in L1(ν), and assume that
Cp := supj

∫
X ep|fj |dν < +∞ for each p > 0. For each C > 0, we then have∫

X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.
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Cp := supj

∫
X ep|fj |dν < +∞ for each p > 0. For each C > 0, we then have∫

X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.

Sketch of the Proof. Assume f = 0 (one can reduce to this case). As
∫

X e|fj |dν is bounded, the
sequence |fj |2 is uniformly integrable. Thus, as fj ! 0 ν-a.e., we deduce that

∫
X |fj |

2dν ! 0.
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Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
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X ep|fj |dν < +∞ for each p > 0. For each C > 0, we then have∫

X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.

Sketch of the Proof. f = 0 and fj
L2(ν)
! 0.
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X ep|fj |dν < +∞ for each p > 0. For each C > 0, we then have∫

X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.

Sketch of the Proof. f = 0 and fj
L2(ν)
! 0. Pick µ such that Ent(µ|ν) ≤ C, set g := dµ

dν for
g ∈ L1(ν).
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X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.

Sketch of the Proof. f = 0 and fj
L2(ν)
! 0. Pick µ such that Ent(µ|ν) ≤ C, set g := dµ

dν for
g ∈ L1(ν). We have, for any p > 0,

|fj |g ≤ |fj |e
p|fj | + p−1

χ(g).

This follows using the convex conjugate weights (onR+) χ(x) = (x + 1) log(x + 1) − x and

χ
∗(y) := sup

x≥0
{xy − χ(x)} = ey − y − 1 ≤ yey

.

Antonio Trusiani Extremal metrics on resolutions



Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Lemma

Assume that E1
j ∋ uj ! u ∈ E1 weakly. If Hj (uj ) is bounded, then uj ! u strongly.

Lemma

Pick a convergent sequence fj ! f in L1(ν), and assume that
Cp := supj

∫
X ep|fj |dν < +∞ for each p > 0. For each C > 0, we then have∫

X |fj − f |dµ! 0 uniformly wrt all positive measures µ such that Ent(µ|ν) ≤ C.

Sketch of the Proof. f = 0 and fj
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! 0. Pick µ such that Ent(µ|ν) ≤ C, set g := dµ

dν for
g ∈ L1(ν). We have, for any p > 0,

|fj |g ≤ |fj |e
p|fj | + p−1

χ(g).

Since χ(x) − x log x is bounded from above on R+, we have
∫

X χ(g) dν ≤ C′ for C′ that only
depend on C.
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χ(g).

Since χ(x) − x log x is bounded from above on R+, we have
∫

X χ(g) dν ≤ C′ for C′ that only
depend on C. Hence∫

X
|fj | dµ =

∫
X
|fj |g dν ≤

∫
X
|fj |e

p|fj | dν + p−1C′ ≤ ∥fj∥L2(ν)
C1/2

2p + p−1C′
.
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g ∈ L1(ν). We have, for any p > 0,
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Since χ(x) − x log x is bounded from above on R+, we have
∫

X χ(g) dν ≤ C′ for C′ that only
depend on C. Hence∫

X
|fj | dµ =

∫
X
|fj |g dν ≤

∫
X
|fj |e

p|fj | dν + p−1C′ ≤ ∥fj∥L2(ν)
C1/2

2p + p−1C′
.

For any ε > 0 one can choose p ≫ 1 such that p−1C′ ≤ ε to have that
∫

X |fj |dµ ≤ 2ε when
∥fj∥L2(ν)

is small enough.
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Assume that E1
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(
(1 − εj )u

k
)

≥
∫

X

(
uj − (1 − εj )u

k
)

dµj =

∫
X
(uj−u)dµj+

∫
X
(u−uk )dµj+εj

∫
X

uk dµj
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As elements in E1
j , E

1 have zero Lelong numbers (Di Nezza-Darvas-Lu ’18), the main result in
Zeriahi ’01 gives that

sup
j

∫
X

ep|uj | dν < +∞, sup
k

∫
X

ep|uk | dν < +∞.
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As elements in E1
j , E

1 have zero Lelong numbers (Di Nezza-Darvas-Lu ’18), the main result in
Zeriahi ’01 gives that

sup
j

∫
X

ep|uj | dν < +∞, sup
k

∫
X

ep|uk | dν < +∞.

Hence, from the Lemma below we get
∫

X (uj − u)dµj
j!+∞
! 0, supj

∫
X |u − uk |dµj

k!+∞
! 0.

Lemma
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As εj
∫

X uk dµj ≥ −kVjεj
j!+∞
! 0, we deduce that

lim inf j!+∞ Ej (uj ) ≥ limk!+∞ E(uk ) = E(u).
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Strong Compactness (Proof)
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There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Lemma

Assume that E1
j ∋ uj ! u ∈ E1 weakly. If Hj (uj ) is bounded, then uj ! u strongly.

Proof of the Theorem.

Antonio Trusiani Extremal metrics on resolutions



Strong Compactness (Proof)

Lemma

There exists a uniform constant C > 0 such that Ej (u) ≥ Vj supX u − C
(
Hj (u) + 1

)
for

all u ∈ E1
j and all j ∈ N.

Lemma

Assume that E1
j ∋ uj ! u ∈ E1 weakly. If Hj (uj ) is bounded, then uj ! u strongly.

Proof of the Theorem. As supX uj is bounded, we may assume that uj ! u weakly. By the first
Lemma, Ej (u) is bounded below. We deduce that E(u) ≥ lim supj!+∞ Ej (uj ) > −∞, i.e. u ∈ E1.
The second Lemma then concludes the proof.

Antonio Trusiani Extremal metrics on resolutions



Openness of coercivity
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The general recipe for openness of coercivity
Fix a closed subgroup G ⊂ Aut0(X) and consider functionals

M : F ! R ∪ {+∞}, Mj : Fj ! R ∪ {+∞},

respectively defined on subsets of E1 and E1
j and satisfying the following conditions:

Invariance: both Fj ,F and Mj , M are invariant under translation and under the action of G;
Normalization: 0 lies in Fj and F , and Mj (0) ! M(0).

Lower Semicontinuity: If Fj ∋ uj ! u ∈ E1 strongly, then u ∈ F and
lim inf j!+∞ Mj (uj ) ≥ M(u).
Convexity: Fj is convex wrt psh geodesics and Mj is convex along such geodesics.

Entropy Growth: there exists δ > 0, C > 0 such that Mj (u) ≥ δHj (u)− C
(
d1,j (u, 0) + 1

)
for

any u ∈ Fj and any j ∈ N.

Properness: for each j the action of G on E1
j is proper.

Theorem

Set F0 := {u ∈ F : E(u) = 0} and F0
j := {u ∈ Fj : Ej (u) = 0}. Suppose that there

exists δ,C ∈ R (δ is not necessarily positive!) such that

M(u) ≥ δd1,G(u, 0)− C

for any u ∈ F0. Then for any δ′ < δ there exists C′ ∈ R and j0 ∈ Z≥0 such that

Mj (u) ≥ δ′d1,j,G(u, 0)− C′

for any u ∈ F0
j and any j ≥ j0.

Antonio Trusiani Extremal metrics on resolutions



The general recipe for openness of coercivity
Fix a closed subgroup G ⊂ Aut0(X) and consider functionals

M : F ! R ∪ {+∞}, Mj : Fj ! R ∪ {+∞},

respectively defined on subsets of E1 and E1
j and satisfying the following conditions:

Invariance: both Fj ,F and Mj , M are invariant under translation and under the action of G;
Normalization: 0 lies in Fj and F , and Mj (0) ! M(0).

Lower Semicontinuity: If Fj ∋ uj ! u ∈ E1 strongly, then u ∈ F and
lim inf j!+∞ Mj (uj ) ≥ M(u).
Convexity: Fj is convex wrt psh geodesics and Mj is convex along such geodesics.

Entropy Growth: there exists δ > 0, C > 0 such that Mj (u) ≥ δHj (u)− C
(
d1,j (u, 0) + 1

)
for

any u ∈ Fj and any j ∈ N.

Properness: for each j the action of G on E1
j is proper.

Theorem

Set F0 := {u ∈ F : E(u) = 0} and F0
j := {u ∈ Fj : Ej (u) = 0}. Suppose that there

exists δ,C ∈ R (δ is not necessarily positive!) such that

M(u) ≥ δd1,G(u, 0)− C

for any u ∈ F0. Then for any δ′ < δ there exists C′ ∈ R and j0 ∈ Z≥0 such that

Mj (u) ≥ δ′d1,j,G(u, 0)− C′

for any u ∈ F0
j and any j ≥ j0.

Antonio Trusiani Extremal metrics on resolutions



The general recipe for openness of coercivity
Fix a closed subgroup G ⊂ Aut0(X) and consider functionals

M : F ! R ∪ {+∞}, Mj : Fj ! R ∪ {+∞},

respectively defined on subsets of E1 and E1
j and satisfying the following conditions:

Invariance: both Fj ,F and Mj , M are invariant under translation and under the action of G;
Normalization: 0 lies in Fj and F , and Mj (0) ! M(0).

Lower Semicontinuity: If Fj ∋ uj ! u ∈ E1 strongly, then u ∈ F and
lim inf j!+∞ Mj (uj ) ≥ M(u).
Convexity: Fj is convex wrt psh geodesics and Mj is convex along such geodesics.

Entropy Growth: there exists δ > 0, C > 0 such that Mj (u) ≥ δHj (u)− C
(
d1,j (u, 0) + 1

)
for

any u ∈ Fj and any j ∈ N.

Properness: for each j the action of G on E1
j is proper.

Theorem

Set F0 := {u ∈ F : E(u) = 0} and F0
j := {u ∈ Fj : Ej (u) = 0}. Suppose that there

exists δ,C ∈ R (δ is not necessarily positive!) such that

M(u) ≥ δd1,G(u, 0)− C

for any u ∈ F0. Then for any δ′ < δ there exists C′ ∈ R and j0 ∈ Z≥0 such that

Mj (u) ≥ δ′d1,j,G(u, 0)− C′

for any u ∈ F0
j and any j ≥ j0.

Antonio Trusiani Extremal metrics on resolutions



Proof of the general recipe
By normalization, we may assume Mj (0) = M(0) = 0. Pick δ′ < δ.

By contradiction,
passing to subsequence if needed, we can find uj ∈ F0

j and Cj ! +∞ such that

Mj (uj ) ≤ δ′d1,j,G(uj , 0)− Cj .

As G acts properly on E1
j , there exists gj such that d1,j,G(uj , 0) = d1,j (u

gj
j , 0).

By G-invariance of Mj and F0
j we can replace uj by ugj

j , getting that
Mj (uj ) ≤ δ′d1,j (uj , 0)− Cj .
Then the entropy growth gives that Tj := d1,j (uj , 0) ! +∞.
Let (uj,t )t∈[0,Tj ]

⊂ F0
j be the unit-speed geodesic joining 0 and uj . Since t ! Mj (uj,t )

is convex and vanishes at t = 0,

Mj (uj,t ) ≤
t
Tj

Mj (uj ) ≤ tδ′.

Since d1,j (uj,t , 0) = t , we obtain |supX uj,t | ≤ Ct and again the entropy growth gives
supj Hj (uj,t ) < +∞ for any t fixed.
The compactness proved before that leads to uj,t ! vt ∈ E1 strongly (up to passing to
a subsequence). By lower semicontinuity we know that vt ∈ F0 and M(vt ) ≤ tδ′.
One can then prove that d1,G(vt , 0) = d1(vt , 0) (not hard), and hence

tδ′ ≥ M(vt ) ≥ δd1,G(vt , 0)− C = δd1(vt , 0)− C = δt − C,

which leads to a contradiction when t > C/(δ − δ′).
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The compactness proved before that leads to uj,t ! vt ∈ E1 strongly (up to passing to
a subsequence). By lower semicontinuity we know that vt ∈ F0 and M(vt ) ≤ tδ′.
One can then prove that d1,G(vt , 0) = d1(vt , 0) (not hard), and hence

tδ′ ≥ M(vt ) ≥ δd1,G(vt , 0)− C = δd1(vt , 0)− C = δt − C,

which leads to a contradiction when t > C/(δ − δ′).

Antonio Trusiani Extremal metrics on resolutions



Thank you!

Thank you for your attention!
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