Weighted Extremal Kähler metrics on resolutions of singularities

joint paper with Sébastien Boucksom and Mattias Jonsson.

arXiv:2412.06096

Antonio Trusiani Chalmers University of Technology

GdT Complexe CIRGET Université du Québec à Montréal 20 March 2025

Outline

- Introduction
- 2 Strong topology of ω -psh functions
- 3 Strong convergence and strong compactness for varying classes
- Openness of coercivity

Introduction

Let X be a compact Kähler manifold, let $T \subset \operatorname{Aut}_r(X)$ be a maximal compact torus, and let $\Omega = (\omega, m_\Omega)$ be a T-equivariant Kähler form where $m_\Omega : X \to \mathfrak{t}^\vee$ is a moment map for ω .

Let X be a compact Kähler manifold, let $T \subset \operatorname{Aut}_r(X)$ be a maximal compact torus, and let $\Omega = (\omega, m_{\Omega})$ be a T-equivariant Kähler form where $m_{\Omega} : X \to \mathfrak{t}^{\vee}$ is a moment map for ω .

 \bigstar Aut_r(X) is the identity component of the subgroup of automorphisms acting trivially on the Albanese torus Alb(X) = $H^0(X, \Omega_X^1)^{\vee}/H_1(X, \mathbb{Z})$.

- Its Lie algebra consists of all holomorphic vector fields $\xi \in H^0(X, TX)$ such that $\alpha(\xi) = 0$ for any holomorphic 1-form $\alpha \in H^0(X, \Omega^1_X)$.
- if X is projective, then $\operatorname{Aut}_r(X) \simeq \operatorname{Aut}_0(X,L)/\mathbb{C}^*$ for $L \to X$ ample line bundle;
- In general, Aut_r(X) is still a linear algebraic group and Aut₀(X)/Aut_r(X) is a compact complex torus [Fujiki '78].

Let X be a compact Kähler manifold, let $T\subset \operatorname{Aut}_{\Gamma}(X)$ be a maximal compact torus, and let $\Omega=(\omega,m_{\Omega})$ be a T-equivariant Kähler form where $m_{\Omega}:X\to \mathfrak{t}^{\vee}$ is a moment map for ω .

Definition (Lahdili '19, Inoue '22)

Let $v, w \in C^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P := m_{\Omega}(X)$. Then Ω is a (v, w)-extremal metric if it is a (v, w)-excK metric, i.e.

$$S_{\nu}(\Omega) = w(m_{\Omega})I^{\rm ext}(m_{\Omega})$$

where $S_{\nu}(\Omega)$ is the ν -weighted scalar curvature while l^{ext} is the unique affine function on t^{\vee} (ν -weighted extremal function) determined by the vanishing of the weighted Futaki invariant. [\rightsquigarrow Simon's lectures]

Let X be a compact Kähler manifold, let $T \subset \operatorname{Aut}_r(X)$ be a maximal compact torus, and let $\Omega = (\omega, m_{\Omega})$ be a T-equivariant Kähler form where $m_{\Omega} : X \to \mathfrak{t}^{\vee}$ is a moment map for ω .

Definition (Lahdili '19, Inoue '22)

Let $v, w \in C^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P := m_{\Omega}(X)$. Then Ω is a (v, w)-extremal metric if it is a (v, w)-excK metric, i.e.

$$S_{\nu}(\Omega) = w(m_{\Omega})I^{\rm ext}(m_{\Omega})$$

where $S_v(\Omega)$ is the *v-weighted scalar curvature* while I^{ext} is the unique affine function on \mathfrak{t}^\vee (*v-weighted extremal function*) determined by the vanishing of the weighted Futaki invariant. [\sim Simon's lectures]

- $(v, w) = (1, 1) \sim$ classical cscK and extremal metrics.
- $w(\alpha) = n + \langle (\log v)'(\alpha), \alpha \rangle \sim v$ -solitons, i.e. $\mathrm{Ric}_{V}^{V}(\Omega) = \Omega$. Case $v(\alpha) = e^{2\langle \alpha, \xi \rangle} \sim \mathrm{gradient} \ \mathrm{K\"{a}hler-Ricci} \ \mathrm{solitons} \ \mathrm{Ric}(\omega) = \omega - \mathcal{L}_{J\varepsilon}\omega$.
- many others...

Let $\mathcal{H}_{\omega}:=\{arphi\in\mathcal{C}^{\infty}(X): \omega_{arphi}:=\omega+dd^{c}arphi>0\}$ be the set of Kähler potentials, and denote by \mathcal{H}_{ω}^{T} those that are T-invariant.

Let $\mathcal{H}_{\omega}:=\{\varphi\in\mathcal{C}^{\infty}(X):\omega_{\varphi}:=\omega+dd^{c}\varphi>0\}$ be the set of Kähler potentials, and denote by \mathcal{H}_{ω}^{T} those that are T-invariant. The associated T-equivariant Kähler forms are given by $\Omega_{\varphi}=(\omega_{\varphi},m_{\Omega_{\varphi}})$ where $m_{\Omega_{\varphi}}:=m_{\Omega}+d^{c}\varphi$. $m_{\Omega_{\varphi}}(X)=m_{\Omega}(X)=P$

Let $\mathcal{H}_{\omega}:=\{\varphi\in\mathcal{C}^{\infty}(X):\omega_{\varphi}:=\omega+dd^{c}\varphi>0\}$ be the set of Kähler potentials, and denote by $\mathcal{H}^{\mathcal{T}}_{\omega}$ those that are T-invariant. The associated T-equivariant Kähler forms are given by $\Omega_{\varphi}=(\omega_{\varphi},m_{\Omega_{\varphi}})$ where $m_{\Omega_{\varphi}}:=m_{\Omega}+d^{c}\varphi$. Fact: $m_{\Omega_{\varphi}}(X)=P$.

Theorem (Lahdili '19)

Let $v, w \in \mathcal{C}^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P = m_{\Omega}(X)$. The operator

$$\mathcal{H}_{\omega}^{\mathsf{T}} \ni \varphi \to \left(w(m_{\Omega_{\varphi}}) I^{\text{ext}}(m_{\Omega_{\varphi}}) - \mathcal{S}_{v}(\Omega_{\varphi}) \right) v(m_{\Omega_{\varphi}}) \omega_{\varphi}^{n}$$

admits an Euler-Lagrange functional: the weighted relative Mabuchi functional $M^{rel}_{\omega,\nu,w}$.

 $\mathbf{M}^{\mathrm{rel}}_{\omega,V,W}: \mathcal{H}^T_{\omega} \to \mathbb{R}$ is an Euler-Lagrange functional for the operator

$$\mathcal{H}_{\omega}^{\mathsf{T}}\ni\varphi\rightarrow\mu_{\varphi}:=\left(\textit{w}(\textit{m}_{\Omega_{\varphi}})\textit{I}^{\rm ext}(\textit{m}_{\Omega_{\varphi}})-\textit{S}_{\textit{V}}(\Omega_{\varphi})\right)\textit{v}(\textit{m}_{\Omega_{\varphi}})\omega_{\varphi}^{\textit{n}} \text{ means that }$$

$$\frac{d}{dt} \left(\mathbf{M}_{\omega, \mathbf{v}, \mathbf{w}}^{\text{rel}} (\varphi + t \, f) \right)_{|t=0} = \int_{X} f \, \mu_{\varphi}$$

for any $f \in \mathcal{C}^{\infty}(X)^T$.

Let $\mathcal{H}_{\omega}:=\{arphi\in\mathcal{C}^{\infty}(X):\omega_{arphi}:\omega_{arphi}:=\omega+dd^{c}arphi>0\}$ be the set of Kähler potentials, and denote by \mathcal{H}_{ω}^{T} those that are T-invariant. The associated T-equivariant Kähler forms are given by $\Omega_{arphi}=(\omega_{arphi},m_{\Omega_{arphi}})$ where $m_{\Omega_{arphi}}:=m_{\Omega}+d^{c}arphi$. Fact: $m_{\Omega_{arphi}}(X)=P$.

Theorem (Lahdili '19)

Let $v, w \in \mathcal{C}^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P = m_{\Omega}(X)$. The operator

$$\mathcal{H}_{\omega}^{T} \ni \varphi \to \left(w(m_{\Omega_{\varphi}}) I^{\text{ext}}(m_{\Omega_{\varphi}}) - S_{V}(\Omega_{\varphi}) \right) v(m_{\Omega_{\varphi}}) \omega_{\varphi}^{n}$$

admits an Euler-Lagrange functional: the weighted relative Mabuchi functional $M^{\mathrm{rel}}_{\omega,\nu,w}$. $\rightsquigarrow \varphi \in \mathcal{H}^{\mathcal{T}}_{\omega}$ is a critical point of $M^{\mathrm{rel}}_{\omega,\nu,w}$ iff Ω_{φ} is a (ν,w) -extremal Kähler metric.

Rmk: the same result holds if $T \subset \operatorname{Aut}_r(X)$ is not maximal.

Let $\mathcal{H}_{\omega}:=\{arphi\in\mathcal{C}^{\infty}(X):\omega_{arphi}:\omega_{arphi}:=\omega+dd^{c}arphi>0\}$ be the set of Kähler potentials, and denote by \mathcal{H}_{ω}^{T} those that are T-invariant. The associated T-equivariant Kähler forms are given by $\Omega_{arphi}=(\omega_{arphi},m_{\Omega_{arphi}})$ where $m_{\Omega_{arphi}}:=m_{\Omega}+d^{c}arphi$. Fact: $m_{\Omega_{arphi}}(X)=P$.

Theorem (Lahdili '19)

Let $v, w \in \mathcal{C}^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P = m_{\Omega}(X)$. The operator

$$\mathcal{H}_{\omega}^{T} \ni \varphi \to \left(w(m_{\Omega_{\varphi}}) I^{\text{ext}}(m_{\Omega_{\varphi}}) - S_{v}(\Omega_{\varphi}) \right) v(m_{\Omega_{\varphi}}) \omega_{\varphi}^{n}$$

admits an Euler-Lagrange functional: the weighted relative Mabuchi functional $M^{\rm rel}_{\omega,\nu,w}$. $\rightsquigarrow \varphi \in \mathcal{H}^{\mathcal{T}}_{\omega}$ is a critical point of $M^{\rm rel}_{\omega,\nu,w}$ iff Ω_{φ} is a (ν,w) -extremal Kähler metric.

Theorem (Chen-Cheng '21, Apostolov-Jubert-Lahdili '23, He '19, Di Nezza-Jubert-Lahdili '24, Han-Liu '24)

Under the aforementioned setting,

• the existence of a (ν,w) -extremal Kähler metric in $\{\omega\}$ implies that $M^{\mathrm{rel}}_{\omega,\nu,w}$ is coercive on \mathcal{H}^T_{ω} , i.e. there exist $\delta>0, C>0$ such that $M^{\mathrm{rel}}_{\omega,\nu,w}\geq \delta J_{\omega,T}-C$;

Let $\mathcal{H}_{\omega}:=\{\varphi\in\mathcal{C}^{\infty}(X):\omega_{\varphi}:=\omega+dd^{c}\varphi>0\}$ be the set of Kähler potentials, and denote by \mathcal{H}_{ω}^{T} those that are T-invariant. The associated T-equivariant Kähler forms are given by $\Omega_{\varphi}=(\omega_{\varphi},m_{\Omega_{\varphi}})$ where $m_{\Omega_{\varphi}}:=m_{\Omega}+d^{c}\varphi$. Fact: $m_{\Omega_{\varphi}}(X)=P$.

Theorem (Lahdili '19)

Let $v, w \in \mathcal{C}^{\infty}(\mathfrak{t}^{\vee})$ be two weights such that v, w > 0 on $P = m_{\Omega}(X)$. The operator

$$\mathcal{H}_{\omega}^{T} \ni \varphi \to \left(w(m_{\Omega_{\varphi}}) J^{\text{ext}}(m_{\Omega_{\varphi}}) - S_{v}(\Omega_{\varphi}) \right) v(m_{\Omega_{\varphi}}) \omega_{\varphi}^{n}$$

admits an Euler-Lagrange functional: the weighted relative Mabuchi functional $M^{\rm rel}_{\omega,\nu,w}$. $\rightsquigarrow \varphi \in \mathcal{H}^{\mathcal{T}}_{\omega}$ is a critical point of $M^{\rm rel}_{\omega,\nu,w}$ iff Ω_{φ} is a (ν,w) -extremal Kähler metric.

Theorem (Chen-Cheng '21, Apostolov-Jubert-Lahdili '23, He '19, Di Nezza-Jubert-Lahdili '24, Han-Liu '24)

Under the aforementioned setting,

- the existence of a (v, w)-extremal Kähler metric in $\{\omega\}$ implies that $M_{\omega, v, w}^{\mathrm{rel}}$ is coercive on \mathcal{H}_{ω}^T , i.e. there exist $\delta > 0$, C > 0 such that $M_{\omega, v, w}^{\mathrm{rel}} \ge \delta J_{\omega, T} C$;
- if v is further log-concave on P, the converse holds as well.

Theorem

Let (X, ω_X) be a compact Kähler space with log terminal singularities, and suppose given:

- a compact torus $T \subset \operatorname{Aut}_r(X)$ preserving ω_X ;
- two smooth positive weights v, w on the moment polytope P;
- a T-equivariant resolution of singularities $\pi:Y\to X$, assumed to be of Fano type;
- a sequence of T-invariant Kähler forms ω_j on Y converging smoothly to $\pi^*\omega_X$ and such that $\omega_j \geq (1-\varepsilon_j)\pi^*\omega_X$ with $\varepsilon_j \to 0$.

Theorem

Let (X, ω_X) be a compact Kähler space with log terminal singularities, and suppose given:

- a compact torus $T \subset \operatorname{Aut}_r(X)$ preserving ω_X ;
- two smooth positive weights v, w on the moment polytope P;
- a T-equivariant resolution of singularities $\pi: Y \to X$, assumed to be of Fano type;
- a sequence of T-invariant Kähler forms ω_j on Y converging smoothly to $\pi^*\omega_X$ and such that $\omega_j \geq (1-\varepsilon_j)\pi^*\omega_X$ with $\varepsilon_j \to 0$.

If the relative weighted Mabuchi energy $\mathbf{M}^{\mathrm{rel}}_{\omega_{X}, v, w}$ is coercive on $\mathcal{E}^{1, T}_{\omega}$, then so is $\mathbf{M}^{\mathrm{rel}}_{\omega_{j}, v, w}$ on $\mathcal{H}^{T}_{\omega_{j}}$ for all j large enough, with uniform coercivity constants.

Theorem

Let (X, ω_X) be a compact Kähler space with log terminal singularities, and suppose given:

- a compact torus $T \subset \operatorname{Aut}_r(X)$ preserving ω_X ;
- two smooth positive weights v, w on the moment polytope P;
- a *T*-equivariant resolution of singularities $\pi: Y \to X$, assumed to be of Fano type;
- a sequence of T-invariant Kähler forms ω_j on Y converging smoothly to $\pi^*\omega_X$ and such that $\omega_j \geq (1-\varepsilon_j)\pi^*\omega_X$ with $\varepsilon_j \to 0$.

If the relative weighted Mabuchi energy $\mathbf{M}^{\mathrm{rel}}_{\omega_{X}, v, w}$ is coercive on $\mathcal{E}^{1, T}_{\omega}$, then so is $\mathbf{M}^{\mathrm{rel}}_{\omega_{j}, v, w}$ on $\mathcal{H}^{T}_{\omega_{j}}$ for all j large enough, with uniform coercivity constants.

• $\mathcal{E}^{1,T}$ is the space of *T-invariant finite energy potentials*, and it is given by the *T-*invariant elements in the metric completion of \mathcal{H}_{ω} with respect to a metric d_1 . Note that $c_{\omega}J_{\omega,T}(\varphi) \leq d_1(\varphi,0) \leq C_{\omega}J_{\omega,T}(\varphi) + A_{\omega}$ for any $\varphi \in \mathcal{E}^{1,T}_{\omega,0}$.

Theorem

Let (X, ω_X) be a compact Kähler space with log terminal singularities, and suppose given:

- a compact torus $T \subset \operatorname{Aut}_r(X)$ preserving ω_X ;
- two smooth positive weights v, w on the moment polytope P;
- a *T*-equivariant resolution of singularities $\pi: Y \to X$, assumed to be of Fano type;
- a sequence of T-invariant Kähler forms ω_j on Y converging smoothly to $\pi^*\omega_X$ and such that $\omega_j \geq (1-\varepsilon_j)\pi^*\omega_X$ with $\varepsilon_j \to 0$.

If the relative weighted Mabuchi energy $\mathbf{M}^{\mathrm{rel}}_{\omega_{X}, v, w}$ is coercive on $\mathcal{E}^{1, T}_{\omega}$, then so is $\mathbf{M}^{\mathrm{rel}}_{\omega_{j}, v, w}$ on $\mathcal{H}^{T}_{\omega_{j}}$ for all j large enough, with uniform coercivity constants.

• $\mathcal{E}^{1,T}$ is the space of *T-invariant finite energy potentials*, and it is given by the *T-*invariant elements in the metric completion of \mathcal{H}_{ω} with respect to a metric d_1 . Note that $c_{\omega}J_{\omega,T}(\varphi) \leq d_1(\varphi,0) \leq C_{\omega}J_{\omega,T}(\varphi) + A_{\omega}$ for any $\varphi \in \mathcal{E}^{1,T}_{\omega,0}$.

Corollary

Assume that X is smooth, T is a maximal torus and v is log-concave. If $\{\omega_X\}$ contains a (v,w)-weighted extremal Kähler metric, then so does $\{\omega_j\}$ for all j large enough.

Definition

We say that $\pi:Y\to X$ is of Fano type if there exists a singular metric ϕ on $-K_Y$ such that

- the curvature current $dd^c\phi$ is π -semipositive;
- $\bullet \hspace{0.1cm} \phi$ has trivial multiplier ideal sheaf.

Definition

We say that $\pi:Y\to X$ is of Fano type if there exists a singular metric ϕ on $-K_Y$ such that

- the curvature current $dd^c\phi$ is π -semipositive;
- \bullet ϕ has trivial multiplier ideal sheaf.
- \iff There exists a q-psh function f (i.e. locally sum of a psh function and a smooth function) such that the measure $\hat{\nu}_Y := e^{-2f}\omega_Y^n$ has finite total mass and $\mathrm{Ric}(\omega_Y) + dd^c f$ is π -semipositive;
- If there exists an effective Q-divisor B on Y such that
 - $-(K_Y + B)$ is π -ample;
 - the pair (Y, B) is klt,

then $\pi: Y \to X$ is of Fano type. If X, Y are projective then the reverse holds.

Definition

We say that $\pi:Y\to X$ is of Fano type if there exists a singular metric ϕ on $-K_Y$ such that

- the curvature current $dd^c\phi$ is π -semipositive;
- ullet ϕ has trivial multiplier ideal sheaf.
- \iff There exists a q-psh function f (i.e. locally sum of a psh function and a smooth function) such that the measure $\hat{\nu}_Y := e^{-2f}\omega_Y^n$ has finite total mass and $\mathrm{Ric}(\omega_Y) + dd^c f$ is π -semipositive;
- If there exists an effective Q-divisor B on Y such that
 - $-(K_Y + B)$ is π -ample;
 - the pair (Y, B) is klt,

then $\pi: Y \to X$ is of Fano type. If X, Y are projective then the reverse holds.

Note: if *X* is smooth then the blowup along any submanifold is of Fano type.

Definition

We say that $\pi:Y\to X$ is of Fano type if there exists a singular metric ϕ on $-K_Y$ such that

- the curvature current $dd^c\phi$ is π -semipositive;
- ullet ϕ has trivial multiplier ideal sheaf.
- \iff There exists a q-psh function f (i.e. locally sum of a psh function and a smooth function) such that the measure $\hat{\nu}_Y := e^{-2f}\omega_Y^n$ has finite total mass and $\mathrm{Ric}(\omega_Y) + dd^c f$ is π -semipositive;
- If there exists an effective Q-divisor B on Y such that
 - $-(K_Y + B)$ is π -ample;
 - the pair (Y, B) is klt,

then $\pi: Y \to X$ is of Fano type. If X, Y are projective then the reverse holds.

Note: if *X* is smooth then the blowup along any submanifold is of Fano type.

Question: When does a resolution of Fano type exist?

Definition

We say that $\pi:Y\to X$ is of Fano type if there exists a singular metric ϕ on $-K_Y$ such that

- the curvature current $dd^c\phi$ is π -semipositive;
- \bullet ϕ has trivial multiplier ideal sheaf.
- \iff There exists a q-psh function f (i.e. locally sum of a psh function and a smooth function) such that the measure $\hat{\nu}_Y := e^{-2f}\omega_Y^n$ has finite total mass and $\mathrm{Ric}(\omega_Y) + dd^c f$ is π -semipositive;
- If there exists an effective Q-divisor B on Y such that
 - $-(K_Y + B)$ is π -ample;
 - the pair (Y, B) is klt,

then $\pi: Y \to X$ is of Fano type. If X, Y are projective then the reverse holds.

Note: if *X* is smooth then the blowup along any submanifold is of Fano type.

Question: When does a resolution of Fano type exist? Examples:

- dim *X* = 2;
- $\dim X = 3$, X with Gorenstein quotient singularities;
- X with isolated singularities locally isomorphic to an affine cone over a Fano manifold
- any crepant resolution.

Some literature

The main Corollary is related to (*X* smooth)

- Arezzo-Pacard '06: blowups of points, X with no nonzero holomorphic vector fields.
- Arezzo-Pacard '09: blowups of a large and suitable collection of points, for cscK metrics.
- Arezzo-Pacard-Singer '11: blowup of points, conditions involving the automorphism group, for extremal metrics.
- Székelyhidi '12: reduced the conditions in APS11 to a stability condition.
- Hallam '23: generalized Szé12 to the weighted case.
- Székelyhidi '15, Dervan-Sektnan '21: relate the existence of extremal metric on the blow-up at a point to K-stability.
- Seyyedali-Székelyhidi '20: blowup of T-invariant submanifolds of codimension larger than 2, extremal metrics.

Moreover, for X singular,

- Székelyhidi '24: independently obtain the existence of cscK metrics on the resolution of a KE klt space with no nontrivial holomorphic vector fields.
- Pan-Tô '24: coercivity of $\mathbf{M}^{\mathrm{rel}}_{\omega_{X},\nu,w}$ on $\mathcal{E}^{1,T}_{\omega}$ implies existence of singular (ν,w) -weighted extremal Kähler metrics when T is maximal, ν is log-concave and the variety admits a T-equivariant resolution of singularities of Fano type.

The Main Advantage with respect to previous works on the topic is the use of a variational approach, with pluripotential-theoretical techniques, avoiding any type of gluing.

The Main Advantage with respect to previous works on the topic is the use of a variational approach, with pluripotential-theoretical techniques, avoiding any type of gluing. → The strategy extends to

- general modifications of Fano type (and not only blowups);
- X with log terminal singularities.

The Main Advantage with respect to previous works on the topic is the use of a variational approach, with pluripotential-theoretical techniques, avoiding any type of gluing. → The strategy extends to

- general modifications of Fano type (and not only blowups);
- X with log terminal singularities.

One could wonder what happens when the morphisms is not T-equivariant wrt a maximal compact torus $T \subset \operatorname{Aut}_r(X)$. For instance when π is T-equivariant wrt to a maximal torus in $\operatorname{Aut}_r(Y)$ which is not maximal in $\operatorname{Aut}_r(X)$.

The Main Advantage with respect to previous works on the topic is the use of a variational approach, with pluripotential-theoretical techniques, avoiding any type of gluing. → The strategy extends to

- general modifications of Fano type (and not only blowups);
- X with log terminal singularities.

One could wonder what happens when the morphisms is not T-equivariant wrt a maximal compact torus $T \subset \operatorname{Aut}_r(X)$. For instance when π is T-equivariant wrt to a maximal torus in $\operatorname{Aut}_r(Y)$ which is not maximal in $\operatorname{Aut}_r(X)$.

By [Apostolov-Jubert-Lahdili] $\mathrm{M}^{\mathrm{rel}}_{\omega_X, \nu, w}$ should then be assumed to be coercive modulo (the identity component) of the centralizer $\mathrm{Aut}_r^T(X)$ of T in $\mathrm{Aut}_r(X)$, and the conclusion should be (under appropriate assumptions) that $\mathrm{M}^{\mathrm{rel}}_{\omega_j, \nu, w}$ is coercive modulo

$$\operatorname{Aut}_r^T(Y) = T_{\mathbb{C}}.$$

The Main Advantage with respect to previous works on the topic is the use of a variational approach, with pluripotential-theoretical techniques, avoiding any type of gluing. → The strategy extends to

- general modifications of Fano type (and not only blowups);
- X with log terminal singularities.

One could wonder what happens when the morphisms is not T-equivariant wrt a *maximal* compact torus $T \subset \operatorname{Aut}_r(X)$. For instance when π is T-equivariant wrt to a maximal torus in $\operatorname{Aut}_r(Y)$ which is not maximal in $\operatorname{Aut}_r(X)$.

By [Apostolov-Jubert-Lańdili] $\mathrm{M}^{\mathrm{rel}}_{\omega_X, \nu, w}$ should then be assumed to be coercive modulo (the identity component) of the centralizer $\mathrm{Aut}_r^T(X)$ of T in $\mathrm{Aut}_r(X)$, and the conclusion should be (under appropriate assumptions) that $\mathrm{M}^{\mathrm{rel}}_{\omega_j, \nu, w}$ is coercive modulo

$$\operatorname{Aut}_r^T(Y) = T_{\mathbb{C}}.$$

The main disadvantage of the approach presented is that it does not cover this case. However, the problem is obstructed in such case [Dervan-Sektnan '21, Hallam '23].

Strong topology of ω -psh functions

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_X \omega^n > 0$.

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_X \omega^n > 0$. The elements of the set

$$\underline{\mathsf{PSH}(X,\omega)} := \left\{ u\,\mathsf{q} - \mathsf{psh} \,:\, \omega_u := \omega + \mathit{dd}^c u \geq 0 \right\} \subset L^1(X)$$

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_X \omega^n > 0$. The elements of the set

$$PSH(X,\omega) := \{u \neq -psh : \omega_u := \omega + dd^c u \ge 0\} \subset L^1(X)$$

are called ω -psh functions.

• When $\{\omega\} = c_1(L)$ is integral they play the role of *singular metrics* on $L \to X$.

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_{X} \omega^{n} > 0$. The elements of the set

$$PSH(X,\omega) := \{u \neq -psh : \omega_u := \omega + dd^c u \ge 0\} \subset L^1(X)$$

- When $\{\omega\} = c_1(L)$ is integral they play the role of *singular metrics* on $L \to X$.
- They are naturally endowed with the weak (i.e. L¹) topology.

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_{X} \omega^{n} > 0$. The elements of the set

$$PSH(X,\omega) := \{u \neq -psh : \omega_u := \omega + dd^c u \ge 0\} \subset L^1(X)$$

- When $\{\omega\} = c_1(L)$ is integral they play the role of *singular metrics* on $L \to X$.
- They are naturally endowed with the weak (i.e. L¹) topology.
- If $\{u_j\}_j \in \mathrm{PSH}(X,\omega)^{\mathbb{N}}$ converges to $u \in \mathrm{PSH}(X,\omega)$, then
 - $\sup_X u_j \rightarrow \sup_X u$;

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_{X} \omega^{n} > 0$. The elements of the set

$$PSH(X,\omega) := \{u \neq -psh : \omega_u := \omega + dd^c u \ge 0\} \subset L^1(X)$$

- When $\{\omega\} = c_1(L)$ is integral they play the role of *singular metrics* on $L \to X$.
- They are naturally endowed with the weak (i.e. L¹) topology.
- If $\{u_i\}_i \in \mathrm{PSH}(X,\omega)^{\mathbb{N}}$ converges to $u \in \mathrm{PSH}(X,\omega)$, then
 - $\sup_X u_j \rightarrow \sup_X u$;
 - $PSH(X, \omega) \ni v_j := \left(\sup_{k \ge j} u_k\right)^* \searrow u$, where the star indicates the upper semicontinuous regularization.

Definition

Let $\omega \geq 0$ such that $V_{\omega} := \int_X \omega^n > 0$. The elements of the set

$$PSH(X,\omega) := \{u \neq -psh : \omega_u := \omega + dd^c u \ge 0\} \subset L^1(X)$$

- When $\{\omega\} = c_1(L)$ is integral they play the role of *singular metrics* on $L \to X$.
- They are naturally endowed with the weak (i.e. L¹) topology.
- If $\{u_i\}_i \in \mathrm{PSH}(X,\omega)^{\mathbb{N}}$ converges to $u \in \mathrm{PSH}(X,\omega)$, then
 - $\sup_X u_j \rightarrow \sup_X u$;
 - $PSH(X, \omega) \ni v_j := \left(\sup_{k \ge j} u_k\right)^* \setminus u$, where the star indicates the upper semicontinuous regularization.
- When $\omega > 0$ then $PSH(X, \omega) \supset \mathcal{H}_{\omega}$.

Lemma

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

Lemma

The Monge-Ampère operator $\mathcal{C}^{\infty}(X) \ni \varphi \longrightarrow \mathrm{MA}_{\omega}(\varphi) := \omega_{\varphi}^{n}$ admits a Euler-Lagrange functional $\underline{\mathbf{E}}_{\omega} : \mathcal{C}^{\infty}(X) \to \mathbb{R}$, normalized by $\underline{\mathbf{E}}_{\omega}(0) = 0$, called *Monge-Ampère energy wrt* ω . In formula,

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

• Bedford-Taylor '82: $(PSH(X,\omega) \cap L^{\infty}(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_{\omega})$.

Lemma

The Monge-Ampère operator $\mathcal{C}^{\infty}(X) \ni \varphi \longrightarrow \mathrm{MA}_{\omega}(\varphi) := \omega_{\varphi}^{n}$ admits a Euler-Lagrange functional $\underline{\mathbf{E}}_{\omega} : \mathcal{C}^{\infty}(X) \to \mathbb{R}$, normalized by $\underline{\mathbf{E}}_{\omega}(0) = 0$, called *Monge-Ampère energy wrt* ω . In formula,

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

• Bedford-Taylor '82: $(\mathrm{PSH}(X,\omega) \cap L^\infty(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_\omega)$. And the Monge-Ampère energy extends to $\mathrm{PSH}(X,\omega) \cap L^\infty(X)$.

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

- Bedford-Taylor '82: $(PSH(X,\omega) \cap L^{\infty}(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_{\omega})$. And the Monge-Ampère energy extends to $PSH(X,\omega) \cap L^{\infty}(X)$.
- As $E_{\omega}: \mathrm{PSH}(X,\omega) \cap L^{\infty}(X) \to \mathbb{R}$ is monotone increasing (" $E'_{\omega} > 0$ ") and continuous along monotone sequences, it extends to $\mathrm{PSH}(X,\omega)$ by

$$\mathrm{E}_{\omega}(u) := \inf \left\{ \mathrm{E}_{\omega}(\varphi) \, : \, \varphi \geq u, \varphi \in \mathrm{PSH}(X, \omega) \cap L^{\infty}(X) \right\} \in \mathbb{R} \cup \{-\infty\}.$$

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

- Bedford-Taylor '82: $(\mathrm{PSH}(X,\omega) \cap L^\infty(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_\omega)$. And the Monge-Ampère energy extends to $\mathrm{PSH}(X,\omega) \cap L^\infty(X)$.
- As $E_{\omega}: \mathrm{PSH}(X,\omega) \cap L^{\infty}(X) \to \mathbb{R}$ is monotone increasing (" $E'_{\omega} > 0$ ") and continuous along monotone sequences, it extends to $\mathrm{PSH}(X,\omega)$ by

$$\mathrm{E}_{\omega}(\mathit{u}) := \inf \left\{ \mathrm{E}_{\omega}(\varphi) \, : \, \varphi \geq \mathit{u}, \varphi \in \mathrm{PSH}(\mathit{X}, \omega) \cap \mathit{L}^{\infty}(\mathit{X}) \right\} \in \mathbb{R} \cup \{-\infty\}.$$

- Some properties of E_{ω} :
 - $\bullet \ \, \mathrm{E}_{\omega}(\varphi+c)=\mathrm{E}_{\omega}(\varphi)+cV_{\omega} \text{ for any } c\in\mathbb{R} \text{ and any } \varphi\in\mathrm{PSH}(X,\omega);$

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

- Bedford-Taylor '82: $(\mathrm{PSH}(X,\omega) \cap L^\infty(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_\omega)$. And the Monge-Ampère energy extends to $\mathrm{PSH}(X,\omega) \cap L^\infty(X)$.
- As $E_{\omega}: \mathrm{PSH}(X,\omega) \cap L^{\infty}(X) \to \mathbb{R}$ is monotone increasing (" $E'_{\omega} > 0$ ") and continuous along monotone sequences, it extends to $\mathrm{PSH}(X,\omega)$ by

$$\mathrm{E}_{\omega}(\mathit{u}) := \inf \left\{ \mathrm{E}_{\omega}(\varphi) \, : \, \varphi \geq \mathit{u}, \varphi \in \mathrm{PSH}(\mathit{X}, \omega) \cap \mathit{L}^{\infty}(\mathit{X}) \right\} \in \mathbb{R} \cup \{-\infty\}.$$

- Some properties of E_{ω} :
 - $E_{\omega}(\varphi + c) = E_{\omega}(\varphi) + cV_{\omega}$ for any $c \in \mathbb{R}$ and any $\varphi \in PSH(X, \omega)$;
 - It is continuous along monotone sequences. In particular $E_{\omega}(u) = \lim_{k \to +\infty} E_{\omega}(\max(u, -k));$

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

- Bedford-Taylor '82: $(\mathrm{PSH}(X,\omega) \cap L^\infty(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_\omega)$. And the Monge-Ampère energy extends to $\mathrm{PSH}(X,\omega) \cap L^\infty(X)$.
- As $E_{\omega}: \mathrm{PSH}(X,\omega) \cap L^{\infty}(X) \to \mathbb{R}$ is monotone increasing (" $E'_{\omega} > 0$ ") and continuous along monotone sequences, it extends to $\mathrm{PSH}(X,\omega)$ by

$$\mathrm{E}_{\omega}(\mathit{u}) := \inf \left\{ \mathrm{E}_{\omega}(\varphi) \, : \, \varphi \geq \mathit{u}, \varphi \in \mathrm{PSH}(\mathit{X}, \omega) \cap \mathit{L}^{\infty}(\mathit{X}) \right\} \in \mathbb{R} \cup \{-\infty\}.$$

- Some properties of E_{ω} :
 - $E_{\omega}(\varphi + c) = E_{\omega}(\varphi) + cV_{\omega}$ for any $c \in \mathbb{R}$ and any $\varphi \in PSH(X, \omega)$;
 - It is continuous along monotone sequences. In particular $E_{\omega}(u) = \lim_{k \to +\infty} E_{\omega} (\max(u, -k));$
 - It is upper semicontinuous: $\limsup_{j\to +\infty} \mathrm{E}_{\omega}(u_j) \leq \mathrm{E}_{\omega}(u)$ if $u_j\to u$.

Lemma

$$E_{\omega}(\varphi) - E_{\omega}(\psi) = \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (\varphi - \psi) \, \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}.$$

- Bedford-Taylor '82: $(\mathrm{PSH}(X,\omega) \cap L^\infty(X))^n \ni (\varphi_1,\ldots,\varphi_n) \longrightarrow \omega_{\varphi_1} \wedge \cdots \wedge \omega_{\varphi_n}$, which is continuous along monotone sequences and the total mass is fixed $(=V_\omega)$. And the Monge-Ampère energy extends to $\mathrm{PSH}(X,\omega) \cap L^\infty(X)$.
- As $E_{\omega}: \mathrm{PSH}(X,\omega) \cap L^{\infty}(X) \to \mathbb{R}$ is monotone increasing (" $E'_{\omega} > 0$ ") and continuous along monotone sequences, it extends to $\mathrm{PSH}(X,\omega)$ by

$$\mathrm{E}_{\omega}(\mathit{u}) := \inf \left\{ \mathrm{E}_{\omega}(\varphi) \, : \, \varphi \geq \mathit{u}, \varphi \in \mathrm{PSH}(\mathit{X}, \omega) \cap \mathit{L}^{\infty}(\mathit{X}) \right\} \in \mathbb{R} \cup \{-\infty\}.$$

- Some properties of E_{ω} :
 - $E_{\omega}(\varphi + c) = E_{\omega}(\varphi) + cV_{\omega}$ for any $c \in \mathbb{R}$ and any $\varphi \in PSH(X, \omega)$;
 - It is continuous along monotone sequences. In particular $E_{\omega}(u) = \lim_{k \to +\infty} E_{\omega} (\max(u, -k));$
 - It is upper semicontinuous: $\limsup_{j\to+\infty} \mathrm{E}_{\omega}(u_j) \leq \mathrm{E}_{\omega}(u)$ if $u_j\to u$.

$$\underline{\mathit{Proof}}\ \mathsf{Let}\ \mathsf{v}_j := \left(\mathsf{sup}_{k \geq j}\ u_k\right)^*. \ \mathsf{Then}\ \mathsf{E}_\omega(\mathsf{u}_j) \leq \mathsf{E}_\omega(\mathsf{v}_j) \searrow \mathsf{E}_\omega(\mathsf{u}).$$

The space $\mathcal{E}^{\scriptscriptstyle extsf{T}}(X,\omega)$

Definition

The space of ω -psh functions of finite energy is defined as

$$\mathcal{E}_{\omega}^{1} := \{ u \in PSH(X, \omega) \mid E_{\omega}(u) > -\infty \},$$

The space $\mathcal{E}^{1}(X,\omega)$

Definition

The space of ω -psh functions of finite energy is defined as

$$\mathcal{E}_{\omega}^{1} := \{ u \in PSH(X, \omega) \mid E_{\omega}(u) > -\infty \},$$

endowed with a strong topology given as the coarsest refinement of the weak topology in which $E_{\omega}: \mathcal{E}_{\omega}^1 \to \mathbb{R}$ becomes continuous.

The space $\mathcal{E}^{\intercal}(X,\omega)$

Definition

The space of ω -psh functions of finite energy is defined as

$$\mathcal{E}^{\mathbf{1}}_{\omega} := \{ u \in PSH(X, \omega) \, | \, \mathrm{E}_{\omega}(u) > -\infty \},$$

endowed with a strong topology given as the coarsest refinement of the weak topology in which $E_{\omega}: \mathcal{E}_{\omega}^{1} \to \mathbb{R}$ becomes continuous.

Examples:

- Assume n=1, then $u\in\mathcal{E}^1_\omega$ iff $\int_X u\,\omega_u>-\infty$. This is equivalent to $\int_X du\wedge d^cu<+\infty$, i.e. $\mathcal{E}^1_\omega=\mathrm{PSH}(X,\omega)\cap W^{1,2}(X)$. In higher dimension, you get $\mathrm{E}_\omega(u)\leq \sup_X u-\int_X du\wedge d^cu\wedge\omega^{n-1}$. Hence functions in \mathcal{E}^1_ω have gradient in $L^2(X)$;
- Let $\varphi \in \text{PSH}(X, \omega), \varphi \leq -1$. Then $-(-\varphi)^{\varepsilon} \in \mathcal{E}_{\omega}^{1}$ if $\varepsilon < \frac{1}{n+1}$.
- If $u \in \mathcal{E}_{\omega}^1$, $v \in \mathrm{PSH}(X,\omega)$, $v \geq u$ then $v \in \mathcal{E}_{\omega}^1$. In particular $\max(u,-k) \in \mathcal{E}_{\omega}^1$ for any $u \in \mathrm{PSH}(X,\omega)$, and $u \in \mathcal{E}_{\omega}^1$ if and only if $\mathrm{E}_{\omega}\left(\max(u,-k)\right) > -C$ uniformly.

The space $\mathcal{E}^{\intercal}(X,\omega)$

Definition

The space of ω -psh functions of finite energy is defined as

$$\mathcal{E}_{\omega}^{1} := \{ u \in PSH(X, \omega) \mid E_{\omega}(u) > -\infty \},$$

endowed with a strong topology given as the coarsest refinement of the weak topology in which $E_{\omega}: \mathcal{E}_{\omega}^{1} \to \mathbb{R}$ becomes continuous.

Theorem (Berman-Boucksom-Guedj-Zeriahi '13)

- The mixed Monge-Ampère operator admits a unique strongly continuous extension to \mathcal{E}_{ω}^1 . In particular the Monge-Ampère operator is strongly continuous.
- For all $u_0, u_1, \ldots, u_n \in \mathcal{E}^1_\omega$, $u_0 \in L^1(\omega_{u_1} \wedge \omega_{u_n})$ and

$$(u_0, u_1, \ldots, u_n) \longrightarrow \int_X u_0 \omega_{u_1} \wedge \cdots \wedge \omega_{u_n}$$

is strongly continuous.

Definition (Darvas '15)

The *Darvas metric* on \mathcal{E}^1_ω is defined as

$$d_1(u,v) := \mathrm{E}_{\omega}(u) + \mathrm{E}_{\omega}(v) - 2\,\mathrm{E}_{\omega}\left(P_{\omega}(u,v)\right)$$

where
$$P_{\omega}(u,v):=(\sup\{w\in \mathrm{PSH}(X,\omega)\,:\,w\leq \min(u,v)\})^*\in\mathcal{E}^1_{\omega}.$$

Definition (Darvas '15)

The *Darvas metric* on \mathcal{E}^1_ω is defined as

$$d_1(u,v) := \mathrm{E}_{\omega}(u) + \mathrm{E}_{\omega}(v) - 2\,\mathrm{E}_{\omega}\left(P_{\omega}(u,v)\right)$$

where $P_{\omega}(u,v):=(\sup\{w\in \mathrm{PSH}(X,\omega)\,:\,w\leq \min(u,v)\})^*\in\mathcal{E}^1_{\omega}.$

• One immediately have $|E_{\omega}(u) - E_{\omega}(v)| \leq d_1(u, v)$, and it is possible to prove that

$$d_1(u,v) \approx \mathrm{I}_1(u,v) := \int_X |u-v| \left(\mathrm{MA}_\omega(u) + \mathrm{MA}_\omega(v)\right).$$

Hence the induced metric topology coincides with the strong topology!

Definition (Darvas '15)

The *Darvas metric* on \mathcal{E}^1_{ω} is defined as

$$d_1(u,v) := \mathrm{E}_{\omega}(u) + \mathrm{E}_{\omega}(v) - 2\,\mathrm{E}_{\omega}\left(P_{\omega}(u,v)\right)$$

where $P_{\omega}(u, v) := (\sup \{w \in \mathrm{PSH}(X, \omega) : w \leq \min(u, v)\})^* \in \mathcal{E}^1_{\omega}$.

• One immediately have $|E_{\omega}(u) - E_{\omega}(v)| \leq d_1(u, v)$, and it is possible to prove that

$$d_1(u,v) pprox \mathrm{I}_1(u,v) := \int_X |u-v| \left(\mathrm{MA}_\omega(u) + \mathrm{MA}_\omega(v) \right).$$

Hence the induced metric topology coincides with the strong topology!

• (\mathcal{E}_u^1, d_1) is a geodesic metric space. Indeed any two points in \mathcal{E}_u^1 can be joined by a unique $psh\ geodesic\ (u_t)_{t\in[0,1]}$, which is a constant speed geodesic for d_1 , i.e. $d_1(u_t, u_s) = |t-s|d_1(u_0, u_1)$.

Definition (Darvas '15)

The *Darvas metric* on \mathcal{E}^1_ω is defined as

$$d_1(u,v) := \mathrm{E}_{\omega}(u) + \mathrm{E}_{\omega}(v) - 2\,\mathrm{E}_{\omega}\left(P_{\omega}(u,v)\right)$$

where $P_{\omega}(u, v) := (\sup \{w \in \mathrm{PSH}(X, \omega) : w \leq \min(u, v)\})^* \in \mathcal{E}^1_{\omega}$.

• One immediately have $|E_{\omega}(u) - E_{\omega}(v)| \leq d_1(u, v)$, and it is possible to prove that

$$d_1(u,v) pprox \mathrm{I}_1(u,v) := \int_X |u-v| \left(\mathrm{MA}_\omega(u) + \mathrm{MA}_\omega(v) \right).$$

Hence the induced metric topology coincides with the strong topology!

- (\mathcal{E}_u^1, d_1) is a geodesic metric space. Indeed any two points in \mathcal{E}_u^1 can be joined by a unique $psh\ geodesic\ (u_t)_{t\in[0,1]}$, which is a constant speed geodesic for d_1 , i.e. $d_1(u_t, u_s) = |t-s|d_1(u_0, u_1)$.
- The convergence $u_j \to u$ in \mathcal{E}_{ω}^1 is equivalent to the existence of a sequence $w_k \in \mathcal{E}_{\omega}^1$, $w_k \leq u_{j_k}$ such that $w_k \nearrow u$ [This is called "quasi-monotone convergence"].

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c\tau_g, \quad \mathcal{E}_\omega(\tau_g) = 0.$$

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c \tau_g, \quad \mathrm{E}_\omega(\tau_g) = 0.$$

For each
$$u \in \text{PSH}(X, \omega)$$
, we set $u^g := \tau^g + g^*u$. $\rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c \tau_g, \quad \mathcal{E}_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}_ω^1 , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}_\omega^1$ and C>0.

As the neutral component $\operatorname{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \operatorname{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c \tau_g, \quad \mathrm{E}_\omega(\tau_g) = 0.$$

For each $u \in \text{PSH}(X, \omega)$, we set $u^g := \tau^g + g^*u$. $\rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}^1_ω , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}^1_\omega$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_\omega \cap L^\infty(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u\in\mathcal{E}^1_\omega$ by approximation. Thus $u^g\in\mathcal{E}^1_\omega$ and the action $\mathcal{E}^1_\omega\times\mathrm{Aut}_0(X)\to\mathcal{E}^1_\omega$ is strongly continuous.

As the neutral component $\operatorname{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \operatorname{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c \tau_g, \quad \mathcal{E}_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}_ω^1 , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}_\omega^1$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_\omega \cap L^\infty(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u \, g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u \in \mathcal{E}_{\omega}^1$ by approximation. Thus $u^g \in \mathcal{E}_{\omega}^1$ and the action $\mathcal{E}_{\omega}^1 \times \operatorname{Aut}_0(X) \to \mathcal{E}_{\omega}^1$ is strongly continuous. As $u \to u^g = \tau_g + g^*u$ is monotone increasing, $P_{\omega}(u^g, v^g) = P_{\omega}(u, v)^g$. Hence the action is an isometry on \mathcal{E}_{ω}^1 .

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c\tau_g, \quad \mathrm{E}_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \leadsto \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}_ω^1 , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}_\omega^1$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_{\omega} \cap L^{\infty}(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u \, g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u \in \mathcal{E}_{\omega}^1$ by approximation. Thus $u^g \in \mathcal{E}_{\omega}^1$ and the action $\mathcal{E}_{\omega}^1 \times \operatorname{Aut}_0(X) \to \mathcal{E}_{\omega}^1$ is strongly continuous. As $u \to u^g = \tau_g + g^*u$ is monotone increasing, $P_{\omega}(u^g, v^g) = P_{\omega}(u, v)^g$. Hence the action is an isometry on \mathcal{E}_{ω}^1 .

Finally, assume $\omega>0$. Since $\mathrm{Aut}_0(X)$ acts by isometries, we can assume u=0. By closedness of $\{g\in\mathrm{Aut}_0(X):d_1(\tau_g,0)\leq C\}$, it is enough to show that any sequence g_j such that $d_1(\tau_{g_j},0)\leq C$ admits a convergent subsequence in $\mathrm{Aut}(X)$.

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c \tau_g, \quad \mathcal{E}_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}_ω^1 , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}_\omega^1$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_\omega \cap L^\infty(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u \in \mathcal{E}_{\omega}^1$ by approximation. Thus $u^g \in \mathcal{E}_{\omega}^1$ and the action $\mathcal{E}_{\omega}^1 \times \operatorname{Aut}_0(X) \to \mathcal{E}_{\omega}^1$ is strongly continuous. As $u \to u^g = \tau_g + g^*u$ is monotone increasing, $P_{\omega}(u^g, v^g) = P_{\omega}(u, v)^g$. Hence the action is an isometry on \mathcal{E}_{ω}^1 .

Finally, assume $\omega>0$. Since $\mathrm{Aut}_0(X)$ acts by isometries, we can assume u=0. By closedness of $\{g\in\mathrm{Aut}_0(X):d_1(\tau_g,0)\leq C\}$, it is enough to show that any sequence g_j such that $d_1(\tau_{g_j},0)\leq C$ admits a convergent subsequence in $\mathrm{Aut}(X)$. By [Darvas-Lu '20] $\Delta_\omega\,\tau_{g_j}\leq C'$. Hence $g_i:X\to X$ is uniformly Lipschitz wrt (the Riemannian metric induced by) ω .

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c\tau_g, \quad \mathcal{E}_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}_ω^1 , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}_\omega^1$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_\omega \cap L^\infty(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u \in \mathcal{E}_{\omega}^1$ by approximation. Thus $u^g \in \mathcal{E}_{\omega}^1$ and the action $\mathcal{E}_{\omega}^1 \times \operatorname{Aut}_0(X) \to \mathcal{E}_{\omega}^1$ is strongly continuous. As $u \to u^g = \tau_g + g^*u$ is monotone increasing, $P_{\omega}(u^g, v^g) = P_{\omega}(u, v)^g$. Hence the action is an isometry on \mathcal{E}_{ω}^1 .

Finally, assume $\omega>0$. Since $\operatorname{Aut}_0(X)$ acts by isometries, we can assume u=0. By closedness of $\{g\in\operatorname{Aut}_0(X): d_1(\tau_g,0)\leq C\}$, it is enough to show that any sequence g_j such that $d_1(\tau_{g_j},0)\leq C$ admits a convergent subsequence in $\operatorname{Aut}(X)$. By [Darvas-Lu '20] $\Delta_\omega\tau_{g_j}\leq C'$. Hence $g_j:X\to X$ is uniformly Lipschitz wrt (the Riemannian metric induced by) ω . By Ascoli, after passing to a subsequence, $g_j\to g$ uniformly. The map g is then holomorphic.

As the neutral component $\mathrm{Aut}_0(X)$ acts trivially on cohomology, for each $g \in \mathrm{Aut}_0(X)$ there exists a unique $\tau_g \in C^\infty(X)$ such that

$$g^*\omega = \omega + dd^c\tau_g, \quad E_\omega(\tau_g) = 0.$$

For each $u \in PSH(X, \omega)$, we set $u^g := \tau^g + g^*u . \rightsquigarrow \omega + dd^cu^g = g^*(\omega_u)$.

Proposition

The right-action of $\operatorname{Aut}_0(X)$ on $\operatorname{PSH}(X,\omega)$ restricts to an isometry on \mathcal{E}^1_ω , which preserves the Monge-Ampère energy. When $\omega>0$, this action is further proper, i.e. $\{g\in\operatorname{Aut}_0(X):\ d_1(u^g,u)\leq C\}$ is compact for any $u\in\mathcal{E}^1_\omega$ and C>0.

<u>Proof.</u> Let $u \in \mathcal{E}^1_\omega \cap L^\infty(X)$. Then

$$(n+1)E_{\omega}(u^{g}) = (n+1)\left(E_{\omega}(u^{g}) - E_{\omega}(\tau_{g})\right) = \sum_{j=0}^{n} \int_{X} g^{*}u \, g^{*}(\omega_{u})^{j} \wedge g^{*}\omega^{n-j} = (n+1)E_{\omega}(u).$$

This extends to $u \in \mathcal{E}_\omega^1$ by approximation. Thus $u^g \in \mathcal{E}_\omega^1$ and the action $\mathcal{E}_\omega^1 \times \operatorname{Aut}_0(X) \to \mathcal{E}_\omega^1$ is strongly continuous. As $u \to u^g = \tau_g + g^*u$ is monotone increasing, $P_\omega(u^g, v^g) = P_\omega(u, v)^g$. Hence the action is an isometry on \mathcal{E}_ω^1 .

Finally, assume $\omega>0$. Since $\operatorname{Aut}_0(X)$ acts by isometries, we can assume u=0. By closedness of $\{g\in\operatorname{Aut}_0(X):d_1(\tau_g,0)\leq C\}$, it is enough to show that any sequence g_j such that $d_1(\tau_{g_j},0)\leq C$ admits a convergent subsequence in $\operatorname{Aut}(X)$. By [Darvas-Lu '20] $\Delta_\omega\tau_{g_j}\leq C'$. Hence $g_j:X\to X$ is uniformly Lipschitz wrt (the Riemannian metric induced by) ω . By Ascoli, after passing to a subsequence, $g_j\to g$ uniformly. The map g is then holomorphic. Similarly, since $d_1(\tau_g,0)=d_1(0,\tau_{g-1}),g_j^{-1}$ converges uniformly to a holomorphic map $h:X\to X$. Now $g_jg_j^{-1}=g_j^{-1}g_j=\operatorname{Id}$ yields $gh=hg=\operatorname{Id}$.

Given a closed Lie subgroup $G \subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v) := \inf_{g \in G} d_1(u^g,v)$ on $\mathcal{E}^1_\omega \times \mathcal{E}^1_\omega$. \leadsto quotient pseudometric on \mathcal{E}^1_ω/G , which is a metric when the action is proper.

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}^1_\omega\times\mathcal{E}^1_\omega$. \leadsto quotient pseudometric on \mathcal{E}^1_ω/G , which is a metric when the action is proper. Note: the action is proper is $\omega\geq 0$ and G is a reductive subgroup of $\operatorname{Aut}_r(X)$ (see Remark 1.9 of the paper).

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}^1_\omega\times\mathcal{E}^1_\omega$. \leadsto quotient pseudometric on \mathcal{E}^1_ω/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}^1_\omega$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}^1_\omega\times\mathcal{E}^1_\omega$. \leadsto quotient pseudometric on \mathcal{E}^1_ω/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}_{\omega}^1$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Definition

We say that M is coercive modulo G if there exists $\delta>0$, C>0 such that $M\geq \delta J_G-C$ on $\mathcal F$, where $J_G(u):=\inf_{g\in G}J(u^g):=\inf_{g\in G}\left(\int_X u^g\omega^n-\mathrm E_\omega(u^g)\right)$.

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}_\omega^1\times\mathcal{E}_\omega^1.$ \leadsto quotient pseudometric on \mathcal{E}_ω^1/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}_{\omega}^1$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Definition

We say that M is coercive modulo G if there exists $\delta>0$, C>0 such that $M\geq \delta J_G-C$ on $\mathcal F$, where $J_G(u):=\inf_{g\in G}J(u^g):=\inf_{g\in G}\left(\int_X u^g\omega^n-\mathrm E_\omega(u^g)\right)$.

Lemma

 \emph{M} is coercive if and only if there exists $\delta'>0$, $\emph{C}'>0$ such that $\emph{M}(\emph{u})\geq \delta'\emph{d}_{1,\emph{G}}(\emph{u},0)-\emph{C}'$ for any $\emph{u}\in \emph{F}^0:=\{\emph{v}\in \emph{F}\,;\, E_\omega(\emph{v})=0\}.$

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}_\omega^1\times\mathcal{E}_\omega^1.$ \leadsto quotient pseudometric on \mathcal{E}_ω^1/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}_{\omega}^1$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Definition

We say that M is coercive modulo G if there exists $\delta>0$, C>0 such that $M\geq \delta J_G-C$ on $\mathcal F$, where $J_G(u):=\inf_{g\in G}J(u^g):=\inf_{g\in G}\left(\int_X u^g\omega^n-\mathrm E_\omega(u^g)\right)$.

Lemma

 \emph{M} is coercive if and only if there exists $\delta'>0, \emph{C}'>0$ such that $\emph{M}(\emph{u})\geq \delta'\emph{d}_{1,\emph{G}}(\emph{u},0)-\emph{C}'$ for any $\emph{u}\in \emph{F}^0:=\{\emph{v}\in \emph{F}\,;\, E_\omega(\emph{v})=0\}.$

$$\underline{\textit{Proof.}} \text{ Set } \mathcal{T}_{\omega} := \sup_{u \in \mathrm{PSH}(X, \omega)} \left\{ \sup_{X} u - V_{\omega}^{-1} \int_{X} u \, \omega^{n} \right\} \in [0, +\infty), \text{ and let } u \in \mathcal{E}_{\omega}^{1} \text{ such that } \\ \mathrm{E}_{\omega}(u) = 0.$$

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}_\omega^1\times\mathcal{E}_\omega^1.$ \leadsto quotient pseudometric on \mathcal{E}_ω^1/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}_{\omega}^1$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Definition

We say that M is coercive modulo G if there exists $\delta>0$, C>0 such that $M\geq \delta J_G-C$ on $\mathcal F$, where $J_G(u):=\inf_{g\in G}J(u^g):=\inf_{g\in G}\left(\int_X u^g\omega^n-\mathrm E_\omega(u^g)\right)$.

Lemma

M is coercive if and only if there exists $\delta'>0, C'>0$ such that $M(u)\geq \delta'd_{1,G}(u,0)-C'$ for any $u\in \mathcal{F}^0:=\{v\in \mathcal{F}\,;\, \mathrm{E}_\omega(v)=0\}.$

<u>Proof.</u> Set $T_{\omega} := \sup_{u \in \mathrm{PSH}(X,\omega)} \left\{ \sup_X u - V_{\omega}^{-1} \int_X u \, \omega^n \right\} \in [0,+\infty)$, and let $u \in \mathcal{E}_{\omega}^1$ such that $\mathrm{E}_{\omega}(u) = 0$. Then

$$J(u^g) = \int_X u^g \,\omega^n \leq \int_X |u^g| \, \big(\mathrm{MA}_\omega(u^g) + \mathrm{MA}_\omega(0) \big) = I_1(u^g, 0) \approx d_1(u^g, 0),$$

from which we get $J_G(u) \leq d_{1,G}(u,0)$.

Given a closed Lie subgroup $G\subset \operatorname{Aut}_0(X)$, we define $d_{1,G}(u,v):=\inf_{g\in G}d_1(u^g,v)$ on $\mathcal{E}_\omega^1\times\mathcal{E}_\omega^1.$ \leadsto quotient pseudometric on \mathcal{E}_ω^1/G , which is a metric when the action is proper.

Consider a functional $M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ defined on a subset $\mathcal{F} \subset \mathcal{E}_{\omega}^1$, such that both M and \mathcal{F} are translation invariant, and assume that \mathcal{F} is G-invariant.

Definition

We say that M is coercive modulo G if there exists $\delta>0, C>0$ such that $M\geq \delta J_G-C$ on $\mathcal{F},$ where $J_G(u):=\inf_{g\in G}J(u^g):=\inf_{g\in G}\left(\int_X u^g\omega^n-\mathrm{E}_\omega(u^g)\right)$.

Lemma

 \emph{M} is coercive if and only if there exists $\delta'>0, \ C'>0$ such that $\emph{M}(\emph{u})\geq \delta'\emph{d}_{1,G}(\emph{u},0)-\emph{C}'$ for any $\emph{u}\in \mathcal{F}^0:=\{\emph{v}\in \mathcal{F}\,;\, E_\omega(\emph{v})=0\}.$

 $\underline{\textit{Proof.}} \ \mathsf{Set} \ \mathcal{T}_{\omega} := \sup_{u \in \mathsf{PSH}(\mathsf{X}, \omega)} \left\{ \sup_{X} u - V_{\omega}^{-1} \int_{\mathsf{X}} u \, \omega^n \right\} \in [0, +\infty), \ \mathsf{and} \ \mathsf{let} \ u \in \mathcal{E}_{\omega}^1 \ \mathsf{such that} \\ \mathsf{E}_{\omega}(u) = \mathsf{0}. \ \mathsf{Then}$

$$J(u^g) = \int_X u^g \, \omega^n \leq \int_X |u^g| \, \big(\mathrm{MA}_\omega(u^g) + \mathrm{MA}_\omega(0) \big) = I_1(u^g, 0) \approx d_1(u^g, 0),$$

from which we get $J_G(u) \lesssim d_{1,G}(u,0)$. On the other hand

$$d_1(u^g,0) \leq d_1(u^g,\sup_X u^g) + d_1(\sup_X u^g,0) = V_\omega \sup_X u^g + V_\omega |\sup_X u^g| - \operatorname{E}_\omega(u^g) = 2V_\omega \sup_X u^g,$$

where we used that $\sup_X u^g \ge E_\omega(u^g) = 0$. Hence $d_1(u^g,0) \le 2V_\omega T_\omega + 2J(u^g)$.

Strong convergence and strong compactness for varying classes

Setting and Weak Convergence

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$. Set $V_j:=V_{\omega_j}, V:=V_{\omega}, \mathrm{E}_j:=\mathrm{E}_{\omega_j}, \mathrm{E}:=\mathrm{E}_{\omega}, \mathcal{E}_j^1:=\mathcal{E}_{\omega_j}^1, \mathcal{E}^1:=\mathcal{E}_{\omega}^1, \mathrm{MA}_j:=$

 $\mathrm{MA}_{\omega_j}, \mathrm{MA} := \mathrm{MA}_{\omega},$ and $d_{1,j}, d_1$ for the Darvas metrics.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in \mathrm{PSH}(X,\omega_j)$ converges weakly to $u \in \mathrm{PSH}(X,\omega)$ if $u_j \to u$ in L^1 .

Rmks:

- Since $\omega_i \leq C\omega_X$, this is equivalent to the convergence in PSH($X, C\omega_X$).
- ullet In particular, it is not hard to check that there exists A>0 such that

$$\sup_{X} u - A \le V_{j}^{-1} \int_{X} u \, \omega_{j}^{n} \le \sup_{X} u$$

for any $u \in \mathrm{PSH}(X, \omega_j)$. Hence any sequence $u_j \in \mathrm{PSH}(X, \omega_j)$ with $\int_X u_j \, \omega_j^n$ uniformly bounded admits a subsequence u_{j_k} that converges weakly to $u \in \mathrm{PSH}(X, \omega)$. [This follows from the weak compactness of $\{u \in \mathrm{PSH}(X, C\omega_X) : |\sup_X u| \leq C\}$]

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in \mathrm{PSH}(X,\omega_j)$ converges weakly to $u \in \mathrm{PSH}(X,\omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $PSH(X, \omega_j) \ni u_j \to u \in PSH(X, \omega)$ we have $\limsup_{i \to +\infty} E_j(u_j) \le E(u)$.

<u>Proof.</u> We can assume $u_i \leq 0$.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

<u>Proof.</u> We can assume $u_j \leq 0$. Indeed we know that $\tilde{u}_j := u_j - \sup_X u_j \to \tilde{u} := u - \sup_X u$.

$$\mathrm{E}_{j}(u_{j})-\mathrm{E}_{j}(\tilde{u}_{j})=V_{j}\sup_{X}u_{j}\longrightarrow V\sup_{X}u=\mathrm{E}(u)-\mathrm{E}(\tilde{u}).$$

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in \mathrm{PSH}(X,\omega_j)$ converges weakly to $u \in \mathrm{PSH}(X,\omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{i\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

<u>Proof.</u> We can assume $u_j \leq 0$. We can assume $u_j \geq -C$ uniformly. This follows from $u_j^k := \max(u_j, -k) \to u^k := \max(u, -k), \, \mathrm{E}_j(u_j) \leq \mathrm{E}_j(\max(u_j, -k))$ and $\mathrm{E}(u^k) \searrow \mathrm{E}(u)$.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

Proof. We can assume $u_i \leq 0$. We can assume $u_i \geq -C$ uniformly. Then

$$\mathrm{E}_{j}(u_{j}) \leq \mathrm{E}_{j}\left((1-\varepsilon_{j})u\right) + \int_{X}\left(u_{j}-(1-\varepsilon_{j})u\right)\left(\omega_{j}+(1-\varepsilon_{j})dd^{c}u\right)^{n}.$$

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

Proof. We can assume $u_i \leq 0$. We can assume $u_i \geq -C$ uniformly. Then

$$\mathrm{E}_j(u_j) \leq \mathrm{E}_j\left((1-\varepsilon_j)u\right) + \int_X \left(u_j - (1-\varepsilon_j)u\right) \left(\omega_j + (1-\varepsilon_j)dd^cu\right)^n.$$

We have $\mathrm{E}_j\left((1-\varepsilon_j)u\right)\to\mathrm{E}(u)$. This easily follows from the smooth convergence $\omega_j\to\omega$ and the fact that u is bounded, as

$$\mathrm{E}_{j}\left((1-\varepsilon_{j})u\right)=\frac{1}{n+1}\sum_{k=0}^{n}\int_{X}(1-\varepsilon_{j})u\left(\omega_{j}+(1-\varepsilon_{j})dd^{c}u\right)^{k}\wedge\omega_{j}^{n-k}.$$

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in PSH(X, \omega_j)$ converges weakly to $u \in PSH(X, \omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

<u>Proof.</u> We can assume $u_i \leq 0$. We can assume $u_i \geq -C$ uniformly. Then

$$E_j(u_j) \leq E_j \left((1-\varepsilon_j)u \right) + \int_V \left(u_j - (1-\varepsilon_j)u \right) \left(\omega_j + (1-\varepsilon_j)dd^c u \right)^n.$$

We have $E_j\left((1-\varepsilon_j)u\right)\to E(u)$. Similarly $\int_X u\left(\omega_j+(1-\varepsilon_j)dd^cu\right)^n\to \int_X u\left(\omega+dd^cu\right)^n$.

Let $\{\omega_j\}_{j\in\mathbb{N}}$ be a sequence of semipositive, big (1, 1)-forms on X converging smoothly to a big semipositive form ω . Assume also that $\omega_j\geq (1-\varepsilon_j)\omega$ with $\varepsilon_j\to 0$.

Definition

We say that a sequence $\{u_j\}_j$ with $u_j \in \mathrm{PSH}(X,\omega_j)$ converges weakly to $u \in \mathrm{PSH}(X,\omega)$ if $u_j \to u$ in L^1 .

Proposition

For any weakly convergent sequence $\mathrm{PSH}(X,\omega_j)\ni u_j\to u\in\mathrm{PSH}(X,\omega)$ we have $\limsup_{j\to+\infty}\mathrm{E}_j(u_j)\le\mathrm{E}(u)$.

Proof. We can assume $u_i \leq 0$. We can assume $u_i \geq -C$ uniformly. Then

$$\mathrm{E}_{j}(u_{j}) \leq \mathrm{E}_{j}\left((1-\varepsilon_{j})u\right) + \int_{V}\left(u_{j} - (1-\varepsilon_{j})u\right)\left(\omega_{j} + (1-\varepsilon_{j})dd^{c}u\right)^{n}.$$

We have $\mathbf{E}_{j}\left((1-\varepsilon_{j})u\right)\to\mathbf{E}(u)$. Similarly $\int_{X}u\left(\omega_{j}+(1-\varepsilon_{j})\mathit{dd^{c}u}\right)^{n}\to\int_{X}u\left(\omega+\mathit{dd^{c}u}\right)^{n}$. On the other hand

$$\int_X u_j \left(\omega_j + (1-\varepsilon_j) \textit{dd}^c u\right)^n = \int_X u_j \left(\omega_j - (1-\varepsilon_j)\omega + (1-\varepsilon_j)(\omega + \textit{dd}^c u)\right)^n \leq (1-\varepsilon_j)^n \int_X u_j (\omega + \textit{dd}^c u)^n$$

as $u_j \leq 0$ and $\omega_j \geq (1-\varepsilon_j)\omega$. The proof concludes setting $v_j := \left(\sup_{k \geq j} u_k\right)^*$ and observing that, by Monotone Convergence,

$$\int_{Y} u_{j} (\omega + dd^{c}u)^{n} \leq \int_{Y} v_{j} (\omega + dd^{c}u)^{n} \rightarrow \int_{Y} u (\omega + dd^{c}u)^{n}$$

Antonio Trusiani

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_i(u_i)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}_j^1$ decreases to u, then $u_j \to u$ strongly.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}_j^1$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_i(u_i)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_j$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>*Proof.*</u> We first want to prove that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_j$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We first want to prove that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \le d_1(u,v)$. Set $u^k := \max(u,-k), v^k := \max(v,-k)$. Then

$$d_{1,j}(u_j,v_j) \leq d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) + d_{1,j}\left((1-\varepsilon_j)u^k,(1-\varepsilon_j)v^k\right) + d_{1,j}\left((1-\varepsilon_j)v^k,v_j\right)\right).$$

We claim that $\limsup_{j\to+\infty} RHS \le d_1(u,u^k) + d_1(u^k,v^k) + d_1(v^k,v) \stackrel{k\to+\infty}{\longrightarrow} d_1(u,v)$.

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

Definition

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_j$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We first want to prove that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$. Set $u^k := \max(u,-k), v^k := \max(v,-k)$. Then

$$d_{1,j}(u_j,v_j) \leq d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) + d_{1,j}\left((1-\varepsilon_j)u^k,(1-\varepsilon_j)v^k\right) + d_{1,j}\left((1-\varepsilon_j)v^k,v_j\right)\right).$$

We claim that $\limsup_{j \to +\infty} \mathrm{RHS} \leq d_1(u,u^k) + d_1(u^k,v^k) + d_1(v^k,v) \overset{k \to +\infty}{\longrightarrow} d_1(u,v)$. Set $u_j^k := \max\left(u_j, (1-\varepsilon_j)u^k\right)$. Observe that $\limsup_{j \to \infty} \mathrm{E}_j(u_j^k) \leq \mathrm{E}(u^k)$ as $u_j^k \to u^k$ weakly.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}_i^1$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We first want to prove that $\limsup_{j\to +\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$. Set $u^k := \max(u,-k), v^k := \max(v,-k)$. Then

$$d_{1,j}(u_j,v_j) \leq d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) + d_{1,j}\left((1-\varepsilon_j)u^k,(1-\varepsilon_j)v^k\right) + d_{1,j}\left((1-\varepsilon_j)v^k,v_j\right).$$

We claim that $\limsup_{j \to +\infty} \operatorname{RHS} \leq d_1(u,u^k) + d_1(u^k,v^k) + d_1(v^k,v) \overset{k \to +\infty}{\longrightarrow} d_1(u,v)$. Set $u_j^k := \max \left(u_j, (1-\varepsilon_j)u^k\right)$. Observe that $\limsup_{j \to \infty} \operatorname{E}_j(u_j^k) \leq \operatorname{E}(u^k)$ as $u_j^k \to u^k$ weakly. Then

$$d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) \leq d_{1,j}\left(u_j,u_j^k\right) + d_{1,j}\left(u_j^k,(1-\varepsilon_j)u^k\right) = 2E_j(u_j^k) - E_j(u_j) - E_j\left((1-\varepsilon_j)u^k\right).$$

We deduce $\limsup_{j\to +\infty} d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) \leq d_1(u,u^k)$ as $u_j\to u$ strongly and $(1-\varepsilon_j)u^k\to u^k$ strongly.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_i$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}_j^1$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We first want to prove that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$. Set $u^k := \max(u,-k), v^k := \max(v,-k)$. Then

$$d_{1,j}(u_j,v_j) \leq d_{1,j}\left(u_j,(1-\varepsilon_j)u^k\right) + d_{1,j}\left((1-\varepsilon_j)u^k,(1-\varepsilon_j)v^k\right) + d_{1,j}\left((1-\varepsilon_j)v^k,v_j\right)\right).$$

We claim that $\limsup_{j\to +\infty} \mathrm{RHS} \leq d_1(u,u^k) + d_1(u^k,v^k) + d_1(v^k,v) \stackrel{k\to +\infty}{\longrightarrow} d_1(u,v)$. Set $w^k := P_\omega(u^k,v^k)$. Then

$$\begin{split} d_{1,j}\left((1-\epsilon_j)u^k,(1-\epsilon_j)v^k\right) &\leq d_{1,j}\left((1-\epsilon_j)u^k,(1-\epsilon_j)w^k\right) + d_{1,j}\left((1-\epsilon_j)w^k,(1-\epsilon_j)v^k\right) \\ &= E_j\left((1-\epsilon_j)u^k\right) + E_j\left((1-\epsilon_j)v^k\right) - 2E_j\left((1-\epsilon_j)w^k\right) \overset{j \to +\infty}{\longrightarrow} d_1(u^k,v^k). \end{split}$$

This proves the claim and concludes the first part of the proof.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_j$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_i$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We know that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$. It remains to show that $\liminf_{j\to+\infty} d_{1,j}(u_j,v_j) \geq d_1(u,v)$.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}_j^1$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We know that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v)$. It remains to show that $\liminf_{j\to+\infty} d_{1,j}(u_j,v_j) \geq d_1(u,v)$.

As $d_{1,j}(u_j, v_j) \le d_{1,j}(u_j, 0) + d_{1,j}(v_j, 0)$ is bounded, we may assume that it converges. Set $w_j := P_j(u_j, v_j)$. Using the definition of $d_{1,j}$ one deduce that $d_{1,j}(w_j, 0)$ is bounded as well.

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}^1_j$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}_j^1$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

 $\begin{array}{ll} \underline{Proof.} & \text{We know that } \lim\sup_{j\to+\infty} d_{1,j}(u_j,v_j) \leq d_1(u,v). \text{ It remains to show that} \\ \lim\inf_{j\to+\infty} d_{1,j}(u_j,v_j) \geq d_1(u,v). \\ \text{As } d_{1,j}(u_j,v_j) \leq d_{1,j}(u_j,0) + d_{1,j}(v_j,0) \text{ is bounded, we may assume that it converges. Set} \\ w_j := P_j(u_j,v_j). \text{ Using the definition of } d_{1,j} \text{ one deduce that } d_{1,j}(w_j,0) \text{ is bounded as well. Then} \\ \int_X w_j \omega_j^h \text{ is bounded. By compactness, } w_j \text{ subconverges weakly to } w \in \text{PSH}(X,\omega). \text{ Note that} \\ \text{E}(w) \geq \lim\sup_{j\to+\infty} \text{E}_j(w_j) > -\infty, \text{ and that } w \leq u,v. \end{array}$

Definition

We say that a sequence $\{u_j\}_{j\in\mathbb{N}}$ with $u_j\in\mathcal{E}_j^1$ converges strongly to $u\in\mathcal{E}^1$ if it converges weakly and $\mathrm{E}_j(u_j)\to\mathrm{E}(u)$.

Examples:

- Let $u \in \mathcal{E}^1 \cap L^\infty(X)$. Then $\mathcal{E}_i^1 \ni u_j := (1 \varepsilon_j)u \to u$ strongly.
- if $u \in \mathcal{E}^1 \cap L^\infty(X)$ and $u_j \in \mathcal{E}_j^1$ decreases to u, then $u_j \to u$ strongly.

Proposition

If $u_j, v_j \in \mathcal{E}^1_j$ converge stronlgy to $u, v \in \mathcal{E}^1$, then $d_{1,j}(u_j, v_j) \to d_1(u, v)$.

<u>Proof.</u> We know that $\limsup_{j\to+\infty} d_{1,j}(u_j,v_j) \le d_1(u,v)$. It remains to show that

Since $\liminf_{j\to+\infty} d_{1,j}(u_j,w_j) = \liminf_{j\to+\infty} \left(\mathrm{E}_j(u_j) - \mathrm{E}_j(w_j) \right) \geq \mathrm{E}(u) - \mathrm{E}(w) = d_1(u,w)$, and similarly $\liminf_{j\to+\infty} d_{1,j}(w_j,v_j) \geq d_1(w,v)$, we get

$$d_1(u,v) \leq d_1(u,w) + d_1(w,v) \leq \liminf_{j \to +\infty} \big(d_{1,j}(u_j,w_j) + d_{1,j}(w_j,v_j) \big) = \liminf_{j \to +\infty} d_{1,j}(u_j,v_j).$$

Fix a volume form ν on X and denote by

$$H_j(u) := \frac{1}{2} \operatorname{Ent} \left(\operatorname{MA}_j(u) | \nu \right), \quad H(u) := \frac{1}{2} \operatorname{Ent} \left(\operatorname{MA}(u) | \nu \right)$$

respectively the $\emph{entropy functions}$ on \mathcal{E}^1_j and on $\mathcal{E}^1.$

Fix a volume form ν on X and denote by

$$H_j(u) := \frac{1}{2} \operatorname{Ent} \left(\operatorname{MA}_j(u) | \nu \right), \quad H(u) := \frac{1}{2} \operatorname{Ent} \left(\operatorname{MA}(u) | \nu \right)$$

respectively the *entropy functions* on \mathcal{E}_{j}^{1} and on \mathcal{E}^{1} . Recall: Given two positive measures μ, ν ,

$$\operatorname{Ent}(\mu|\nu) := \begin{cases} \int_X f \log f \, d\nu & \text{if } d\mu = f d\nu \\ +\infty & \text{otherwise.} \end{cases}$$

Fix a volume form ν on X and denote by

$$\textit{H}_{\textit{j}}(\textit{u}) := \frac{1}{2} \text{Ent} \left(\text{MA}_{\textit{j}}(\textit{u}) | \nu \right), \quad \textit{H}(\textit{u}) := \frac{1}{2} \text{Ent} \left(\text{MA}(\textit{u}) | \nu \right)$$

respectively the $\ensuremath{\textit{entropy functions}}$ on \mathcal{E}^1_j and on $\mathcal{E}^1.$

Recall: Given two positive measures μ, ν ,

$$\operatorname{Ent}(\mu|\nu) := \begin{cases} \int_X f \log f \, d\nu & \text{if } d\mu = f d\nu \\ +\infty & \text{otherwise.} \end{cases}$$

It can be expressed as a Legendre transform

$$\operatorname{Ent}(\mu|\nu) = \sup_{g \in \mathcal{C}^0(X)} \left\{ \int_X g \, d\mu - \mu(X) \log \int_X e^g \, d\nu \right\} + \mu(X) \log \mu(X).$$

 $ightharpoonup \operatorname{Ent}(\cdot|
u)$ is convex, lsc on the space of positive measures (wrt the weak convergence) and $\operatorname{Ent}(\mu|
u) \geq \mu(X) \log \frac{\mu(X)}{\nu(X)}$.

Fix a volume form ν on X and denote by

$$\textit{H}_{\textit{j}}(\textit{u}) := \frac{1}{2} \text{Ent} \left(\text{MA}_{\textit{j}}(\textit{u}) | \nu \right), \quad \textit{H}(\textit{u}) := \frac{1}{2} \text{Ent} \left(\text{MA}(\textit{u}) | \nu \right)$$

respectively the *entropy functions* on \mathcal{E}_i^1 and on \mathcal{E}^1 .

Recall: Given two positive measures μ, ν ,

$$\operatorname{Ent}(\mu|\nu) := \begin{cases} \int_X f \log f \, d\nu & \text{if } d\mu = f d\nu \\ +\infty & \text{otherwise.} \end{cases}$$

It can be expressed as a Legendre transform

$$\operatorname{Ent}(\mu|\nu) = \sup_{g \in C^0(X)} \left\{ \int_X g \, d\mu - \mu(X) \log \int_X e^g \, d\nu \right\} + \mu(X) \log \mu(X).$$

 \sim Ent $(\cdot|\nu)$ is convex, lsc on the space of positive measures (wrt the weak convergence) and $\mathrm{Ent}(\mu|\nu) \geq \mu(X)\log\frac{\mu(X)}{\nu(X)}$.

Theorem

Any sequence $\{u_j\}_{j\in\mathbb{N}}$ such that $\sup_X u_j$ and the entropy $H_j(u_j)$ are both bounded admits a subsequence that converges strongly to some $u\in\mathcal{E}^1$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

<u>Proof.</u> By Zeriahi '01 there exists $\alpha > 0, B > 0$ such that

$$\int_X e^{-\alpha u} d\nu \le B$$

for any $u \in \text{PSH}(X, \omega_i) \subset \text{PSH}(X, C\omega)$ with $\sup_X u = 0$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}$.

<u>Proof.</u> By Zeriahi '01 there exists $\alpha > 0, B > 0$ such that

$$\int_X e^{-\alpha u} d\nu \le B$$

for any $u \in \mathrm{PSH}(X,\omega_j) \subset \mathrm{PSH}(X,\mathcal{C}\omega)$ with $\sup_X u = 0$. For such u we have

$$-\alpha E_j(u) \leq \int_X (-\alpha u) MA_j(u) \leq 2H_j(u) + V_j \log \int e^{-\alpha u} d\nu - V_j \log V_j \leq 2H_j(u) + C$$

for a uniform constant C.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

<u>Sketch of the Proof.</u> Assume f=0 (one can reduce to this case). As $\int_X e^{|f_f|} d\nu$ is bounded, the sequence $|f_f|^2$ is uniformly integrable. Thus, as $f_f \to 0$ ν -a.e., we deduce that $\int_X |f_f|^2 d\nu \to 0$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

Sketch of the Proof. f = 0 and $f_j \stackrel{L^2(\nu)}{\rightarrow} 0$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

Sketch of the Proof. f=0 and $f_j \stackrel{L^2(\nu)}{\longrightarrow} 0$. Pick μ such that $\operatorname{Ent}(\mu|\nu) \leq C$, set $g:=\frac{d\mu}{d\nu}$ for $g\in L^1(\nu)$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho|f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu|\nu) \le C$.

<u>Sketch of the Proof.</u> f=0 and $f_j \xrightarrow{L^2(\nu)} 0$. Pick μ such that $\operatorname{Ent}(\mu|\nu) \leq C$, set $g:=\frac{d\mu}{d\nu}$ for $g \in L^1(\nu)$. We have, for any $\rho > 0$,

$$|f_j|g \leq |f_j|e^{p|f_j|} + p^{-1}\chi(g).$$

This follows using the convex conjugate weights (on \mathbb{R}_+) $\chi(x)=(x+1)\log(x+1)-x$ and

$$\chi^*(y) := \sup_{x>0} \{xy - \chi(x)\} = e^y - y - 1 \le ye^y.$$

Antonio Trusiani

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

Sketch of the Proof. f = 0 and $f_j \stackrel{L^2(\nu)}{\longrightarrow} 0$. Pick μ such that $\operatorname{Ent}(\mu|\nu) \leq C$, set $g := \frac{d\mu}{d\nu}$ for $g \in L^1(\nu)$. We have, for any $\rho > 0$,

$$|f_j|g \leq |f_j|e^{p|f_j|} + p^{-1}\chi(g).$$

Since $\chi(x)-x\log x$ is bounded from above on R_+ , we have $\int_X \chi(g)\,d\nu \leq C'$ for C' that only depend on C.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

<u>Sketch of the Proof.</u> f=0 and $f_j \stackrel{L^2(\nu)}{\longrightarrow} 0$. Pick μ such that $\operatorname{Ent}(\mu|\nu) \leq C$, set $g:=\frac{d\mu}{d\nu}$ for $g\in L^1(\nu)$. We have, for any $\rho>0$,

$$|f_j|g \leq |f_j|e^{p|f_j|} + p^{-1}\chi(g).$$

Since $\chi(x)-x\log x$ is bounded from above on R_+ , we have $\int_X \chi(g)\,d\nu \leq C'$ for C' that only depend on C. Hence

$$\int_X |f_j| \, d\mu = \int_X |f_j| g \, d\nu \leq \int_X |f_j| e^{\rho |f_j|} \, d\nu + \rho^{-1} C' \leq \|f_j\|_{L^2(\nu)} C_{2\rho}^{1/2} + \rho^{-1} C'.$$

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{p|f_j|} d\nu < +\infty$ for each p > 0. For each C > 0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu|\nu) \le C$.

Sketch of the Proof. f = 0 and $f_j \stackrel{L^2(\nu)}{\longrightarrow} 0$. Pick μ such that $\operatorname{Ent}(\mu|\nu) \leq C$, set $g := \frac{d\mu}{d\nu}$ for $g \in L^1(\nu)$. We have, for any $\rho > 0$,

$$|f_j|g \leq |f_j|e^{p|f_j|} + p^{-1}\chi(g).$$

Since $\chi(x)-x\log x$ is bounded from above on R_+ , we have $\int_X \chi(g)\,d\nu \leq C'$ for C' that only depend on C. Hence

$$\int_X |f_j| \, d\mu = \int_X |f_j| g \, d\nu \le \int_X |f_j| e^{\rho |f_j|} \, d\nu + \rho^{-1} C' \le \|f_j\|_{L^2(\nu)} C_{2\rho}^{1/2} + \rho^{-1} C'.$$

For any $\varepsilon>0$ one can choose $p\gg 1$ such that $p^{-1}G'\leq \varepsilon$ to have that $\int_X |f_j|d\mu\leq 2\varepsilon$ when $\|f_j\|_{L^2(\nu)}$ is small enough.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

<u>Proof.</u> We want to prove $\liminf_{j\to+\infty} \mathrm{E}_j(u_j) \geq \mathrm{E}(u)$. Set $\mu_j := \mathrm{MA}_j(u_j)$ and $u^k := \mathrm{max}(u, -k)$.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu | \nu) \leq C$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

 $\underline{Proof.}$ We want to prove $\liminf_{j\to+\infty} \mathrm{E}_j(u_j) \geq \mathrm{E}(u)$. Set $\mu_j := \mathrm{MA}_j(u_j)$ and $u^k := \mathrm{max}(u, -k)$. We have

$$E_j(u_j) - E_j\left((1 - \varepsilon_j)u^k\right) \ge \int_X \left(u_j - (1 - \varepsilon_j)u^k\right) d\mu_j = \int_X (u_j - u)d\mu_j + \int_X (u - u^k)d\mu_j + \varepsilon_j \int_X u^k d\mu_j$$

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X \mathrm{e}^{\rho |f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\mathrm{Ent}(\mu | \nu) \leq C$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

<u>Proof.</u> We want to prove $\liminf_{j\to+\infty} \mathrm{E}_j(u_j) \geq \mathrm{E}(u)$. Set $\mu_j := \mathrm{MA}_j(u_j)$ and $u^k := \mathrm{max}(u, -k)$. We have

$$E_{j}(u_{j})-E_{j}\left((1-\varepsilon_{j})u^{k}\right)\geq\int_{X}\left(u_{j}-(1-\varepsilon_{j})u^{k}\right)\ d\mu_{j}=\int_{X}(u_{j}-u)d\mu_{j}+\int_{X}(u-u^{k})d\mu_{j}+\varepsilon_{j}\int_{X}u^{k}\ d\mu_{j}$$

As elements in \mathcal{E}_j^1 , \mathcal{E}^1 have zero Lelong numbers (Di Nezza-Darvas-Lu '18), the main result in Zeriahi '01 gives that

$$\sup_{j} \int_{X} e^{\rho |u_{j}|} \ d\nu < +\infty, \quad \sup_{k} \int_{X} e^{\rho |u^{k}|} \ d\nu < +\infty.$$

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho|f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu|\nu) \le C$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

 $\underline{Proof.}$ We want to prove $\liminf_{j\to+\infty} \mathrm{E}_j(u_j) \geq \mathrm{E}(u)$. Set $\mu_j := \mathrm{MA}_j(u_j)$ and $u^k := \mathrm{max}(u, -k)$. We have

$$E_{j}(u_{j})-E_{j}\left((1-\varepsilon_{j})u^{k}\right)\geq\int_{X}\left(u_{j}-(1-\varepsilon_{j})u^{k}\right)\ d\mu_{j}=\int_{X}(u_{j}-u)d\mu_{j}+\int_{X}(u-u^{k})d\mu_{j}+\varepsilon_{j}\int_{X}u^{k}\ d\mu_{j}$$

As elements in \mathcal{E}_j^1 , \mathcal{E}^1 have zero Lelong numbers (Di Nezza-Darvas-Lu '18), the main result in Zeriahi '01 gives that

$$\sup_{j} \int_{X} e^{\rho |u_{j}|} d\nu < +\infty, \quad \sup_{k} \int_{X} e^{\rho |u^{k}|} d\nu < +\infty.$$

Hence, from the Lemma below we get $\int_X (u_j - u) d\mu_j \overset{j \to +\infty}{\to} 0$, $\sup_j \int_X |u - u^k| d\mu_j \overset{k \to +\infty}{\to} 0$.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{\rho|f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu|\nu) \le C$.

Antonio Trusiani

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

<u>Proof.</u> We want to prove $\liminf_{j\to+\infty} \mathrm{E}_j(u_j) \geq \mathrm{E}(u)$. Set $\mu_j := \mathrm{MA}_j(u_j)$ and $u^k := \mathrm{max}(u, -k)$. We have

$$E_{j}(u_{j})-E_{j}\left((1-\varepsilon_{j})u^{k}\right)\geq\int_{X}\left(u_{j}-(1-\varepsilon_{j})u^{k}\right)d\mu_{j}=\int_{X}(u_{j}-u)d\mu_{j}+\int_{X}(u-u^{k})d\mu_{j}+\varepsilon_{j}\int_{X}u^{k}d\mu_{j}$$

As $\varepsilon_j \int_X u^k d\mu_j \ge -kV_j \varepsilon_j \stackrel{j \to +\infty}{\to} 0$, we deduce that $\liminf_{j \to +\infty} \mathbb{E}_j(u_j) \ge \lim_{k \to +\infty} \mathbb{E}(u^k) = \mathbb{E}(u)$.

Lemma

Pick a convergent sequence $f_j \to f$ in $L^1(\nu)$, and assume that $C_p := \sup_j \int_X e^{p|f_j|} d\nu < +\infty$ for each p>0. For each C>0, we then have $\int_X |f_j - f| d\mu \to 0$ uniformly wrt all positive measures μ such that $\operatorname{Ent}(\mu|\nu) \leq C$.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}$.

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

Proof of the Theorem.

Lemma

There exists a uniform constant C>0 such that $\mathrm{E}_{j}(u)\geq V_{j}\sup_{X}u-C\left(H_{j}(u)+1\right)$ for all $u\in\mathcal{E}_{j}^{1}$ and all $j\in\mathrm{N}.$

Lemma

Assume that $\mathcal{E}_j^1 \ni u_j \to u \in \mathcal{E}^1$ weakly. If $H_j(u_j)$ is bounded, then $u_j \to u$ strongly.

<u>Proof of the Theorem.</u> As $\sup_X u_j$ is bounded, we may assume that $u_j \to u$ weakly. By the first Lemma, $\mathrm{E}_j(u)$ is bounded below. We deduce that $\mathrm{E}(u) \ge \limsup_{j \to +\infty} \mathrm{E}_j(u_j) > -\infty$, i.e. $u \in \mathcal{E}^1$. The second Lemma then concludes the proof.

Openness of coercivity

The general recipe for openness of coercivity

Fix a closed subgroup $G \subset \operatorname{Aut}_0(X)$ and consider functionals

$$\textit{M}: \mathcal{F} \rightarrow \mathbb{R} \cup \{+\infty\}, \quad \textit{M}_j: \mathcal{F}_j \rightarrow \mathbb{R} \cup \{+\infty\},$$

respectively defined on subsets of \mathcal{E}^1 and \mathcal{E}^1_i and satisfying the following conditions:

The general recipe for openness of coercivity

Fix a closed subgroup $G \subset \operatorname{Aut}_0(X)$ and consider functionals

$$M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}, \quad M_i: \mathcal{F}_i \to \mathbb{R} \cup \{+\infty\},$$

respectively defined on subsets of \mathcal{E}^1 and \mathcal{E}^1_i and satisfying the following conditions:

- Invariance: both \mathcal{F}_j , \mathcal{F} and M_j , M are invariant under translation and under the action of G;
- Normalization: 0 lies in \mathcal{F}_j and \mathcal{F} , and $M_j(0) \to M(0)$.
- Lower Semicontinuity: If $\mathcal{F}_j \ni u_j \to u \in \mathcal{E}^1$ strongly, then $u \in \mathcal{F}$ and $\liminf_{j \to +\infty} M_l(u_j) \ge M(u)$.
- Convexity: \mathcal{F}_i is convex wrt psh geodesics and M_i is convex along such geodesics.
- Entropy Growth: there exists $\delta > 0$, C > 0 such that $M_j(u) \ge \delta H_j(u) C\left(d_{1,j}(u,0) + 1\right)$ for any $u \in \mathcal{F}_i$ and any $j \in \mathbb{N}$.
- Properness: for each j the action of G on \mathcal{E}_i^1 is proper.

The general recipe for openness of coercivity

Fix a closed subgroup $G \subset \operatorname{Aut}_0(X)$ and consider functionals

$$M: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}, \quad M_i: \mathcal{F}_i \to \mathbb{R} \cup \{+\infty\},$$

respectively defined on subsets of \mathcal{E}^1 and \mathcal{E}^1_i and satisfying the following conditions:

- Invariance: both \mathcal{F}_j , \mathcal{F} and M_j , M are invariant under translation and under the action of G;
- Normalization: 0 lies in \mathcal{F}_j and \mathcal{F} , and $M_j(0) \to M(0)$.
- Lower Semicontinuity: If $\mathcal{F}_j \ni u_j \to u \in \mathcal{E}^1$ strongly, then $u \in \mathcal{F}$ and $\liminf_{j \to +\infty} M_j(u_j) \ge M(u)$.
- Convexity: \mathcal{F}_i is convex wrt psh geodesics and M_i is convex along such geodesics.
- Entropy Growth: there exists $\delta > 0$, C > 0 such that $M_j(u) \ge \delta H_j(u) C\left(d_{1,j}(u,0) + 1\right)$ for any $u \in \mathcal{F}_j$ and any $j \in \mathbb{N}$.
- Properness: for each j the action of G on \mathcal{E}_{j}^{1} is proper.

Theorem

Set $\mathcal{F}^0:=\{u\in\mathcal{F}: \mathrm{E}(u)=0\}$ and $\mathcal{F}_j^0:=\{u\in\mathcal{F}_j: \mathrm{E}_j(u)=0\}$. Suppose that there exists $\delta, C\in\mathbb{R}$ (δ is not necessarily positive!) such that

$$M(u) \geq \delta d_{1,G}(u,0) - C$$

for any $u \in \mathcal{F}^0$. Then for any $\delta' < \delta$ there exists $C' \in \mathbb{R}$ and $j_0 \in \mathbb{Z}_{\geq 0}$ such that

$$M_i(u) \geq \delta' d_{1,i,G}(u,0) - C'$$

for any $u \in \mathcal{F}_i^0$ and any $j \geq j_0$.

By normalization, we may assume $M_i(0) = M(0) = 0$. Pick $\delta' < \delta$.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$\mathit{M}_{j}(\mathit{u}_{j}) \leq \delta' \mathit{d}_{1,j,G}(\mathit{u}_{j},0) - \mathit{C}_{j}.$$

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_j^1 , there exists g_j such that $d_{1,j,G}(u_j,0)=d_{1,j}(u_j^{g_j},0)$.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{j}^{1} , there exists g_{j} such that $d_{1,j,G}(u_{j},0)=d_{1,j}(u_{j}^{g_{j}},0)$. By G-invariance of M_{j} and \mathcal{F}_{j}^{0} we can replace u_{j} by $u_{j}^{g^{j}}$, getting that $M_{j}(u_{j}) \leq \delta' d_{1,j}(u_{j},0) - C_{j}$.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{j}^{1} , there exists g_{j} such that $d_{1,j,G}(u_{j},0)=d_{1,j}(u_{j}^{g_{j}},0)$. By G-invariance of M_{j} and \mathcal{F}_{j}^{0} we can replace u_{j} by $u_{j}^{g^{j}}$, getting that $M_{j}(u_{j}) \leq \delta' d_{1,j}(u_{j},0) - C_{j}$. Then the entropy growth gives that $T_{i}:=d_{1,j}(u_{i},0) \to +\infty$.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_j^1 , there exists g_j such that $d_{1,j,G}(u_j,0)=d_{1,j}(u_j^{g_j},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_j(u_j) \leq \delta' d_{1,j}(u_j,0) - C_j$.

Then the entropy growth gives that $T_j := d_{1,j}(u_j, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset\mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j .

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_i^1 , there exists g_j such that $d_{1,j,G}(u_j,0)=d_{1,j}(u_j^{g_j},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_i(u_i) \leq \delta' d_{1,i}(u_i, 0) - C_i$.

Then the entropy growth gives that $T_i := d_{1,i}(u_i, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{i}^{1} , there exists g_{j} such that $d_{1,j,G}(u_{j},0)=d_{1,j}(u_{j}^{g_{j}},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_i(u_i) \leq \delta' d_{1,i}(u_i, 0) - C_i$.

Then the entropy growth gives that $T_i := d_{1,j}(u_i, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{i}^{1} , there exists g_{j} such that $d_{1,j,G}(u_{j},0)=d_{1,j}(u_{j}^{g_{j}},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_j(u_j) \leq \delta' d_{1,j}(u_j, 0) - C_j$.

Then the entropy growth gives that $T_j := d_{1,j}(u_j, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$ and again the entropy growth gives $\sup_j H_j(u_{j,t})<+\infty$ for any t fixed.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{i}^{1} , there exists g_{i} such that $d_{1,j,G}(u_{i},0)=d_{1,j}(u_{i}^{g_{i}},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_i(u_i) \leq \delta' d_{1,i}(u_i, 0) - C_i$.

Then the entropy growth gives that $T_j := d_{1,j}(u_j, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_i} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$ and again the entropy growth gives $\sup_i H_i(u_{j,t})<+\infty$ for any t fixed.

The compactness proved before that leads to $u_{j,t} \to v_t \in \mathcal{E}^1$ strongly (up to passing to a subsequence).

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_i^1 , there exists g_j such that $d_{1,j,G}(u_j,0)=d_{1,j}(u_j^{g_j},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_i(u_i) \leq \delta' d_{1,i}(u_i, 0) - C_i$.

Then the entropy growth gives that $T_i := d_{1,j}(u_i, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$ and again the entropy growth gives $\sup_i H_i(u_{j,t})<+\infty$ for any t fixed.

The compactness proved before that leads to $u_{j,t} \to v_t \in \mathcal{E}^1$ strongly (up to passing to a subsequence). By lower semicontinuity we know that $v_t \in \mathcal{F}^0$ and $M(v_t) \leq t\delta'$.

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{i}^{1} , there exists g_{j} such that $d_{1,j,G}(u_{j},0)=d_{1,j}(u_{j}^{g_{j}},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_i(u_i) \leq \delta' d_{1,i}(u_i, 0) - C_i$.

Then the entropy growth gives that $T_i := d_{1,j}(u_i, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$ and again the entropy growth gives $\sup_i H_j(u_{j,t})<+\infty$ for any t fixed.

The compactness proved before that leads to $u_{j,t} \to v_t \in \mathcal{E}^1$ strongly (up to passing to a subsequence). By lower semicontinuity we know that $v_t \in \mathcal{F}^0$ and $M(v_t) \le t\delta'$. One can then prove that $d_{1,G}(v_t,0) = d_1(v_t,0)$ (not hard),

By normalization, we may assume $M_j(0)=M(0)=0$. Pick $\delta'<\delta$. By contradiction, passing to subsequence if needed, we can find $u_j\in\mathcal{F}_j^0$ and $C_j\to+\infty$ such that

$$M_j(u_j) \leq \delta' d_{1,j,G}(u_j,0) - C_j.$$

As G acts properly on \mathcal{E}_{i}^{1} , there exists g_{i} such that $d_{1,j,G}(u_{i},0)=d_{1,j}(u_{i}^{g_{i}},0)$.

By *G*-invariance of M_j and \mathcal{F}_j^0 we can replace u_j by $u_j^{g^j}$, getting that $M_j(u_j) \leq \delta' d_{1,j}(u_j, 0) - C_j$.

Then the entropy growth gives that $T_j := d_{1,j}(u_j, 0) \to +\infty$.

Let $(u_{j,t})_{t\in[0,T_j]}\subset \mathcal{F}_j^0$ be the unit-speed geodesic joining 0 and u_j . Since $t\to M_j(u_{j,t})$ is convex and vanishes at t=0,

$$M_j(u_{j,t}) \leq \frac{t}{T_j} M_j(u_j) \leq t\delta'.$$

Since $d_{1,j}(u_{j,t},0)=t$, we obtain $|\sup_X u_{j,t}|\leq C_t$ and again the entropy growth gives $\sup_j H_j(u_{j,t})<+\infty$ for any t fixed.

The compactness proved before that leads to $u_{j,t} \to v_t \in \mathcal{E}^1$ strongly (up to passing to a subsequence). By lower semicontinuity we know that $v_t \in \mathcal{F}^0$ and $M(v_t) \le t\delta'$. One can then prove that $d_{1,G}(v_t,0) = d_1(v_t,0)$ (not hard), and hence

$$t\delta' \geq M(v_t) \geq \delta d_{1,G}(v_t,0) - C = \delta d_1(v_t,0) - C = \delta t - C,$$

which leads to a contradiction when $t > C/(\delta - \delta')$.

Antonio Trusiani

Thank you!

Thank you for your attention!