1. INTUITION

Theorem 1.1. Suppose all the items in the principle. Suppose given $\sigma, C \in \mathbb{R}$ such that

$$M(\varphi) \ge \sigma \ d_1(\varphi, 0) - C$$

for all $\varphi \in \mathcal{E}_0^1 := \{ \varphi \in \mathcal{E}^1 | \sup \varphi = 0 \}$. Then, for any $\sigma' < \sigma$, there exist $C' \in \mathbb{R}$ and $j_0 \in \mathbb{Z}_{>0}$ such that

$$M_i(\varphi) \ge \sigma' d_i(\varphi, 0) - C'$$

for any $\varphi \in \mathcal{E}_{i,0}^1 := \{ \varphi \in \mathcal{E}_i^1 | \sup \varphi = 0 \}$ and any $j \geq j_0$. Moreover, we assume the following items

- (1) convexity of M_i
- (2) lower semi-continuity
- (3) entropy growth gives two estimates
 - $M_i + C(d(0, \varphi) + 1) \ge \delta H_j$ for some $\delta > 0$
 - Since H_j is uniformly bounded below, then $M_j \geq -C(d(0,\varphi)+1)$ for C large enough.
- (4) normalization

Proof. We proceed by contradition, there exist σ' such that for any C and any j_0 there is a $j \geq j_0$ such that $M_j(\varphi_j) \leq \sigma' d(0, \varphi_j) - C$. In particular, we assume

- (1) $M_j(\varphi_j) \leq \sigma' T_j C_j$, where $C_j \to +\infty$ and $T_j := d(0, \varphi_j)$
- (2) Let $T_i \geq t > 0$, and $\varphi_{i,t}$ is the unit speed geodesic connecting 0 and φ_i . By convexity of M_i along geodesics,

$$M_j(\varphi_{j,t}) \le \frac{t}{T_j} M_j(\varphi_j) < t\sigma',$$
 (1.1)

- (3) the entropy growth condition implies that $\sup_{j} H_{j}(\varphi_{j,t}) < (\sigma' t + C'(t+1))/\delta$ and $d_{1,i}(\varphi_{i,t},0) = t$ is bounded,
- (4) Passing to subsequence, $\varphi_{i,t}$ converges strongly to $\varphi_t \in \mathcal{E}_0^1$
- (5) lower semicontinuity implies

$$t\sigma' \ge \liminf_{j \to +\infty} M_j(\varphi_{j,t}) \ge M(\varphi_t) \ge \sigma \, d_{1,G}(\varphi_t,0) - C = t\sigma - C$$

(6) it only remains to chose $t > C/(\sigma - \sigma')$. This is a consequence of $M_i \ge -Cd(0,\varphi)$.

2. Setup

functionals

$$M_j : \mathcal{E}_j^{1,T} \to \mathbb{R} \cup \{+\infty\}, \quad M : \pi^* \mathcal{E}_X^{1,T} \to \mathbb{R} \cup \{+\infty\}$$

respectively defined by

$$M_j(\varphi) := \mathcal{M}_j^{\mathrm{rel}}(\varphi) = \mathcal{H}_{j,v}(\varphi) + \mathcal{R}_{j,v}(\varphi) + \mathcal{E}_{j,vw\ell_j}(\varphi), \quad \varphi \in \mathcal{E}_j^{1,T},$$

and

$$M(\pi^{\star}\psi) := \mathcal{M}_X^{\mathrm{rel}}(\psi) = \mathcal{H}_{X,v}(\psi) + \mathcal{R}_{X,v}(\psi) + \mathcal{E}_{vw\ell_X}(\psi), \quad \psi \in \mathcal{E}_X^{1,T}.$$

$$\mathcal{E}_j^{1,T} := \{ \varphi \in \mathrm{PSH}^T(\omega_j) | d_{1,j}(\varphi,0) < +\infty \}$$

3. Entropy growth

Lemma 3.1. There exists $\delta, C > 0$ such that

$$M_i^{\text{rel}}(\varphi) \ge \delta H_i(\varphi) - C (d_{1,i}(\varphi, 0) + 1)$$

for all j large enough and $\varphi \in \mathcal{E}_{j}^{1,T}$.

Lemma 3.2.

$$H_{j,v}(\varphi) + R_{j,v}(\varphi) + E_j(\varphi) \ge \delta H_j(\varphi) - C (d_{1,j}(\varphi,0) + 1)$$

Lemma 3.3.

$$|\mathcal{E}_v(\varphi) - \mathcal{E}_v(\psi)| \le A(v) \, \mathrm{d}_1(\varphi, \psi)$$
 (3.1)

(1)

$$\left| \mathbf{E}_{j,vw\xi_j^{\mathrm{ext}}}(\varphi) \right| \le C \, \mathbf{d}_{1,j}(\varphi,0).$$

(2) assume $\nu_Y = \hat{\nu}_Y$ and lemma 4.22 yields

$$R_{j,v} \ge -C(d_{1,j}(\varphi,0) + 1).$$
 (3.2)

- (3) it is enough to show the $(1 \delta) H_{j,v}(\varphi)$ is bounded below.
- (4) Two way to show:

$$\operatorname{Ent}(\mu|\nu) = \sup_{g \in C^0(X)} \left\{ \int g \, d\mu - \mu(X) \log \int e^g d\nu \right\} + \mu(X) \log \mu(X), \tag{3.3}$$

$$\operatorname{Ent}(\mu|\nu) \ge \mu(X) \log \frac{\mu(X)}{\nu(X)}. \tag{3.4}$$

(5) Pick a quasi-psh function f on Y such that $\widehat{\nu}_Y = e^{-2f}\nu_Y$ has finite total mass and $\mathrm{Ric}(\widehat{\nu}_Y) = \mathrm{Ric}(\nu_Y) + dd^c f$ is π -semipositive.

(6)

$$\widehat{\mathbf{R}}_{j,v}(\varphi) := -\mathbf{E}_{j,v}^{\mathrm{Ric}^T(\widehat{\nu}_Y)}(\varphi), \quad \widehat{\mathbf{R}}_{Y,v}(\pi^{\star}\psi) := -\mathbf{E}_{Y,v}^{\mathrm{Ric}^T(\widehat{\nu}_Y)}(\pi^{\star}\psi)$$

(7)

$$\widehat{\mathbf{R}}_{j,v}(\varphi) = \mathbf{R}_{j,v}(\varphi) - \int_{Y} f \, \mathbf{M} \mathbf{A}_{j,v}(\varphi) + c_j, \quad \varphi \in \mathcal{E}_j^{1,T}, \tag{3.5}$$

where

$$c_j := \int_Y f \operatorname{MA}_{j,v}(0) \to \int_Y f \operatorname{MA}_{Y,v}(0) = 0,$$

(8) $\widehat{\mathbf{R}}_{j,v}(\varphi) \geq -C(\mathbf{d}_{1,j}(\varphi,0)+1)$ for $\varphi \in \mathcal{E}_j^{1,T}$, where C>0 denotes a uniform constant that is allowed to vary from line to line. Combined with (3.5) this yields

$$R_{j,v}(\varphi) \ge \int_{Y} f MA_{j,v}(\varphi) - C_j(d_{1,j}(\varphi,0) + 1). \tag{3.6}$$

(9)

$$\widehat{\mathbf{H}}_{j,v}(\varphi) := \frac{1}{2} \operatorname{Ent} \left(\operatorname{MA}_{j,v}(\varphi) | \widehat{\nu}_Y \right), \mathbf{H}_{j,v}(\varphi) = \widehat{\mathbf{H}}_{j,v}(\varphi) - \int_Y f \operatorname{MA}_{j,v}(\varphi)$$

(10)
$$\frac{1}{p} \operatorname{H}_{j,v}(\varphi) = \frac{1}{p} \operatorname{Ent}(\operatorname{MA}(\varphi)|e^{-f}\nu_{Y}) = \frac{1}{p} \operatorname{Ent}\left(\operatorname{MA}_{j,v}(\varphi)|e^{-pf}\nu_{Y}\right) - \int_{Y} f \operatorname{MA}_{j,v}(\varphi) \ge -C - \int_{Y} f \operatorname{MA}_{j,v}(\varphi)$$
(11)
$$\operatorname{M}_{j}^{\operatorname{rel}}(\varphi) = \operatorname{H}_{j,v}(\varphi) + \operatorname{R}_{j,v}(\varphi) + \operatorname{E}_{j,vw\xi_{j}^{\operatorname{ext}}}(\varphi)$$

$$\ge (1 - p^{-1}) \operatorname{H}_{j,v}(\varphi) - C\left(\operatorname{d}_{1,j}(\varphi, 0) + 1\right).$$

4. Lower semicontinuity property $\liminf_{j} M_{j}(\varphi_{j}) \geq M(\pi^{\star}\psi)$,

Assume strong convergence

Lemma 4.1.

$$\lim_{j} \inf \widehat{H}_{j,v}(\varphi_j) \ge \widehat{H}_{Y,v}(\pi^* \psi),$$

$$\operatorname{Ent}(\mu|\nu) = \sup_{g \in C^0(X)} \left\{ \int g \, d\mu - \mu(X) \log \int e^g d\nu \right\} + \mu(X) \log \mu(X),$$
(4.1)

- (1) $\left\{ \int g \, d\mu \mu(X) \log \int e^g d\nu \right\}$ and $\mu(X) \log \mu(X)$ are continuous according to μ
- (2) is convex and lsc on the space \mathcal{M} of positive Radon measures (equipped with the weak topology)

(3)

$$\operatorname{Ent}(\cdot|\nu) \colon \mathcal{M} \to \mathbb{R} \cup \{+\infty\}$$

Lemma 4.2. while Lemma 4.22 implies

$$\liminf_{j} \widehat{R}_{j,v}(\varphi_j) \ge \widehat{R}_{Y,v}(\pi^*\psi).$$

On the other hand, since $\ell_j \to \ell_X$ smoothly, uniform Lipschitz estimate 1 \Rightarrow by Lemma 2.13 strong convergence

$$\lim_{j} E_{j,vw\ell_j}(\varphi_j) = E_{X,vw\ell_X}(\psi).$$