
REGULARITY OF GEODESICS IN THE SPACE OF KÄHLER METRICS

by

Chung-Ming Pan

Abstract. — This master thesis is a survey article on the recent progress of Chen [Che00b],
Błocki [Bł12], Boucksom [Bou12], Chu-Tosatti-Weinkove [CTW17], and Chu-McCleerey
[CM19] in understanding the regularity problem of geodesics on the space of Kähler
metrics on the smooth and some mildly singular cases. The origional problem is proposed
by Mabuchi [Mab87] and reduced by Semmes [Sem92] and Donaldson [Don99] in to a
totally degenerated complex Monge-Ampère equation on a compact Kähler manifold with
boundary.
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1. Introduction

1.1. Problem explanation. — In complex geometry, constructing canonical metrics
on compact Kähler manifolds is a central problem. Yau’s resolution of the Cal-
abi conjecture [Yau78] and the resolution of the Yau-Tian-Donaldson conjecture by
Chen-Donaldson-Sun [CDS15] are some of the landmark results obtained on the
Kähler-Einstein problem. These have been as well several progress in constructing a
constant scalar curvature Kähler (cscK) metrics.

In order to investigate canonical metrics, one idea is to consider functionals on the
space of Kähler potentials and try to construct canonical metrics as critical points of
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these functionals. Unfortunately, such functionals are usually not convex along Eu-
clidean segments. In 1987, Mabuchi [Mab87] introduced a new Riemannian structure
on the space of Kähler potentials and gave evidence that convexity should hold in this
geometry.

Since the space of Kähler potentials is an infinite dimensional Fréchet manifold, one
cannot apply Cauchy-Lipschitz theory to guarantee the existence of Mabuchi geodesics.
Showing the existence of C1,1-smooth Mabuchi geodesics is the main purpose of this
master thesis.

1.2. Historical results. —

(i) In 1987, Mabuchi [Mab87] introduced the following new Riemannian structure on
the space of Kähler potentials

〈u, v〉ϕ :=
∫

X
u · v MAω(ϕ).

(ii) In 1990s, Donaldson and Semmes [Sem92, Don99] independently showed that
the geodesic problem is equivalent to a Dirichlet problem for the homogeneous
complex Monge-Ampère equation on X× A,

(π∗ω + ddc
X×AΦ)n+1 = 0,

Φ(x, 0) = ϕ0(x),
Φ(x, 1) = ϕ1(x),

(1.1)

where A ⊂ C is an annulus and Φ(x, t) = Φ(x, t, s) = ϕt is a function on X × A
(where et+is ∈ A) associated with Mabuchi geodesic ϕt connecting two Kähler
potential ϕ0 and ϕ1 and such that ω + ddc

XΦ > 0 on each X-slice.
(iii) In 2000, Chen [Che00b] proved the C1,1̄-estimate for the solution. The notation C1,1̄

is the space of C1 functions with bounded Laplacian.
(iv) Around 2010 Darvas-Lempert-Vivas [DL12, LV13, Dar14] showed there is no C2-

solution in general.
(v) In 2017, Chu-Tosatti-Weinkove [CTW17] completely proved an a priori C1,1-

estimate, hence C1,1-regularity is essentially optimal.
(vi) In 2019, Chu-McCleerey [CM19] established a similar result when the underlying

variety X is mildly singular.

1.3. Structure of this article. — In Section 2, we explain in more detail the geometric
motivation, focusing on Kähler-Einstein metrics and constant scalar curvature Kähler
(cscK) metrics. In Section 3, we establish a technical theorem which concatenates works
of a lot of experts. We briefly explain the strategy to prove main theorem and show the
basic C0-estimates. Then, we will apply the main theorem to obtain the C1,1-estimate as
desired. Section 4, 5, 6 are the most technical a priori estimates in this thesis. We will
use the estimate already showed in Section 3 to prove C1 and C2-estimates. In Section
7, we briefly explain why we cannot expect that the regularity is better than C1,1 and
introduce the mildly singular setting.
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2. Geometric motivation

In this section, we introduce some geometric motivation of the main problem. It is
a significant problem to find a canonical metric which is the “best" representative of
a given Kähler class and satisfies some geometric condition such as Einstein equation
and constant scalar curvature metrics.

First of all, we are going to set the notations and conventions. Let X be a compact
complex manifold, let ω be a Kähler form on X and α := [ω] ∈ H1,1

dR(X, R) be the cor-
responding de Rham class. Define Kα := {ω̃ ∈ α | ω̃ is Kähler} as the space of Kähler
metrics. Also, we can consider

Kω := {ϕ ∈ C∞(X, R) | ω̃ = ω + ddc ϕ > 0} .

Evidently, we have the following map

Kω Kα

ϕ ωϕ := ω + ddc ϕ
.

According to the well-known ∂∂̄-lemma in Kähler geometry and the maximum princi-
ple, this map is surjective and is injective up to adding constants. The space of Kähler
potentialsKω can be viewed as an infinite dimensional Fréchet manifold. Indeed,Kω is
an convex open subset of the Fréchet vector space C∞(X) and hence the tangent bundle
is TKω = Kω × C∞(X).

Now, we are going to introduce some functionals and geometries on the space of
Kähler potentials Kω. Consider the energy functional as the following

E(ϕ) :=
1

(n + 1)V

n

∑
j=0

∫
M

ϕω
j
ϕ ∧ωn−j

where V =
∫

M ωn is the volume with respect to ω. We have the following proposition
on E by simple calculus of variation.

Proposition 2.1 ([GZ17, p.271]). — We have the following properties:

(i) The functional E is a primitive of the complex Monge-Ampère operator

dE(ϕt)

dt
=

1
V

∫
X

ϕ̇t(ω + ddc ϕ̇t)
n =

∫
X

ϕ̇t MA(ϕt) (2.1)

and

d2E(ϕt)

dt2 =
∫

X
ϕ̈t MA(ϕt)−

n
V

∫
X

dϕt ∧ dc ϕt ∧ (ω + ddc ϕt)
n−1. (2.2)
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(ii) The functional E is concave in Euclidean geometry (i.e. the geodesic starting form ϕ is
ϕt = ϕ + tv), increasing, satisfies E(ϕ + c) = E(ϕ) + c for all c ∈ R, ϕ ∈ Kω and the
cocycle condition

E(ϕ)− E(ψ) =
1

(n + 1)V

n

∑
j=0

∫
X
(ϕ− ψ)(ω + ddc ϕ)j ∧ (ω + ddcψ)n−j.

2.1. Kähler-Einstein metric on Fano manifolds. — Let us recall the usual problem
of Kähler-Einstein metrics: given a Kähler form ω, people aim to find another metric
ω̃ ∈ [ω] such that the Ricci form Ric(ω̃) is proportional to the Kähler form ω̃. Via
∂∂̄-lemma, the Kähler-Einstein condition:

Ric(ω) = λω

can be translated into the corresponding complex Monge-Ampère equations. Note that
we mainly concern with λ = ±1, 0, because the Einstein factor can be normalized after
rescaling the metric (c1(X) < 0 =⇒ λ = −1, c1(X) = 0 =⇒ λ = 0, and c1(X) >
0 =⇒ λ = 1). First, we recall the corresponding complex Monge-Ampère equation to
these three cases:

MA(ϕ) = e−λϕµ (MAλ)
where µ is a smooth volume form with volume 1. For c1(X) < 0 (resp. c1(X) = 0),
the problem is solved by Aubin and Yau [Aub76], [Yau78] (resp. Yau [Yau78]). For
c1(X) > 0 (Fano manifolds), Chen-Donaldson-Sun [CDS15] proved that there exists a
Kähler-Einstein metric on the Fano manifold if and only if it is K-stable (in the sense of
geometric invariant theory).

We introduce the Ding functional F mainly cared and some variational formulas of
F .

Definition 2.1. — Given λ ∈ R, consider the functional Fλ : Kω → R defined by

Fλ(ϕ) := E(ϕ) +
1
λ

log
(∫

X
e−λϕdµ

)
where µ is a smooth volume form with volume 1. The limit case λ = 0 corresponds to

F0(ϕ) = E(ϕ)−
∫

X
ϕdµ = lim

λ→0
Fλ(ϕ).

Proposition 2.2 ([GZ17, p.291]). — The following holds:

dFλ(ϕt)

dt
=
∫

X
ϕ̇t MA(ϕt)−

∫
X

ϕ̇te−λϕt∫
X e−λϕt dµ

dµ. (2.3)

and
d2Fλ(ϕt)

dt2 =
∫

X
ϕ̈t MA(ϕt)−

n
V

∫
X

dϕ̇t ∧ dc ϕ̇t ∧ (ω + ddc ϕt)
n−1

−
∫

X

ϕ̈te−λϕt∫
X e−λϕt dµ

dµ + λ


∫

X

(ϕ̇t)2e−λϕt∫
X e−λϕt dµ

dµ +

(∫
X

ϕ̇te−λϕt∫
X e−λϕt dµ

dµ

)2
 .

(2.4)
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It follows from (2.3) that a critical point of Fλ induces a solution of (MAλ). Indeed,
when λ = 0, we have MA(ϕ) = µ. For λ 6= 0, MA(ϕ) = e−λϕµ∫

X e−λϕdµ
and this induces a

new function

ϕ̃ = ϕ +
1
λ

log
(∫

X
e−λϕdµ

)
,

which is a solution of (MAλ). The functional Fλ is strictly concave for λ = −1 and is
concave for λ = 0 in Euclidean geometry on Kω (i.e. ϕt = ϕ + tv is the geodesic in
Kω). These implies that the Kähler-Einstein metric for c1(X) < 0 case is unique, and
the Ricci flat metric for c1(X) = 0 case is unique up to adding constants. Unfortunately,
when c1(X) > 0 (i.e. λ = +1), the energy part is concave in Euclidean geometry, but
the entropy term is convex.

Mabuchi [Mab87] introduced a new geometry on Kω as follows:

Definition 2.2. — The Mabuchi metric at ϕ ∈ Kω is the L2-inner product with respect
to ωϕ. Explicitly, it is defined by

〈 f , g〉ωϕ
:=
∫

X
f gωn

ϕ.

Considering a path ϕt in Kω, the length induced by the Mabuchi metric is

`(ϕt) =
∫ 1

0

(√∫
X

ϕ̇t
2ωn

ϕt

)
dt

Then, under a variation of ϕt + sψt where ψt is zero at t = 0 and t = 1, we obtain the
geodesic equation which is

ϕ̈t −
1
2
|∇ϕ̇t|2ωϕt

= 0. (2.5)

Furthermore, the geodesic equation yields that a covariant derivative along the path
should be

Dtψt =
dψt

dt
− 1

2
〈∇ψt,∇ϕ̇t〉ωϕt

.

This connection is a torsion free metric connection with respect to the Mabuchi metric
(one can see [Che00b] for more details). By plugging in the geodesic equation into the
second variational formula of E, we obtain:

Proposition 2.3. — E is affine along Mabuchi geodesics.

Let Ω be an domain in C. Consider curves of metrics ϕt on −KX, where t ∈ Ω.

Theorem 2.4 ([Ber15]). — Assume that −KX ≥ 0 in the sense that it has a smooth metric of
semi-positive curvature. Let ϕt be a curve of metrics on −KX such that

ddc
X,t ϕt ≥ 0

in the sense of currents. Then t 7→ − log
(∫

X e−ϕt dµ
)

is subharmonic in Ω. In particular, if
ϕt does not depend on the imaginary part of t, then the function t 7→ − log

(∫
X e−ϕt dµ

)
is

convex.
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Furthermore, in [Ber15], Berndtsson also proved the Kähler-Einstein metric is unique
up to some elements in Aut0(X) where Aut0(X) is the connected component of

Aut(X) := { f : X → X | f is a biholomorphism}
containing IdX. In other words, if ω0 and ω1 are both Kähler-Einstein metrics on a Fano
manifold X, then ω1 = f ∗ω0 for some f ∈ Aut0(X).

Theorem 2.5 ([Ber15]). — Assume that H0,1(X) = 0, and that the curve of metrics ϕt is
independent of the imaginary part of t. Moreover, assume that the metrics ϕt are uniformly
bounded in the sense that for some smooth metric on −KX, ψ, |ϕt − ψ| ≤ C. Then, if the func-
tion t→ − log

(∫
X e−ϕt dµ

)
is affine in Ω, there is a holomorphic vector field V ∈ H0(X, TX)

generating a one parameter family of biholomorphisms ft such that

f ∗t (ωt) = ω0.

Note that for Fano manifolds, H0,1(X) = 0 is a necessary condition. Indeed, if −KX
is positive, then H0,1(X) ' Ȟ1(X,O) ' Ȟn−1(X,O(KX))

∗ = 0 by the Kodaira-Serre
duality and the Kodaira vanishing theorem. One can check that the geodesic satisfies
all the assumptions in Theorem 2.4 and Theorem 2.5.

The previous discussion shows that Mabuchi geodesics play an important role in
studying canonical metrics. Since Cauchy-Lipschitz theorem does not apply in Fréchet
spaces, the existence is not clear at all.

Problem (Boundary Value Problem). — Given two arbitrary Kähler metrics ω0 and ω1,
can we find a Mabuchi geodesic ϕt in Kω such that ω0 = ω + ddc ϕ0 and ω1 = ω + ddc ϕ1?

Semmes [Sem92] and Donaldson [Don99] independently observed this problem can
be reformulated into a totally degenerated complex Monge-Ampère equation. Con-
sider an annulus A := {τ ∈ C | 1 < |τ| < e} and write t = log |τ|. Then, we define a
new function Φ(z, t, s) = Φ(z, t) = ϕt(z) for z ∈ X, and et+is = τ ∈ A. By simple tensor
calculus, we then have the following proposition.

Proposition 2.6 ([Sem92, Don99]). — The Mabuchi geodesic equation (2.5) connecting two
Kähler potential ϕ0 and ϕ1 is equivalent to a totally degenerated complex Monge-Ampère equa-
tion 

(π∗ω + ddc
X×AΦ)n+1 = 0,

Φ(x, 0) = ϕ0(x),
Φ(x, 1) = ϕ1(x).

(2.6)

It turns out that this problem does not admit any smooth solution in general. We shall
explain a counter-example of Darvas-Lempert-Vivas [DL12, LV13, Dar14] in Section 7.
We will nevertheless prove the existence of a C1,1-smooth solution.

One can more generally consider a compact complex manifold M with non-empty
boundary ∂M. Let ω be a Kähler form and F : M → R be smooth. We will try and
solve the complex Monge-Ampère equation

(ω + ddc ϕ)n = eFωn, (2.7)

where ϕ ∈ C∞(M, R) ∩ PSH(M, ω). We discuss this problem in next section.
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2.2. Constant scalar curvature Kähler (cscK) metrics. — Constant curvature prob-
lem is an important issue in differential geometry. In dimension 2 cases, it is just the
Poincaré uniformization theorem. Generally, studying constant scalar curvature met-
ric in a conformal class on compact Riemannian manifold is the celebrated Yamabe
problem which is completely solved by Richard Schoen for all dimension greater than
3. Unfortunately, if one follows the strategy of conformal transformation, the Kähler
condition may be destroyed.

In Kähler geometry, Mabuchi introduced a functionalM on Kω such that the critical
point of M is a constant scalar curvature Kähler metric (cscK metric). The Mabuchi
geometry also plays an important role in such issues. Before discussing the functional
associated to scalar curvature, we introduce the variational formula of the scalar curva-
ture along a curve ϕt.

Proposition 2.7 ([Szé14]). — The first variational formula of the scalar curvature is

d
dt

S(ωϕt) = −D∗ϕt
Dϕt ϕ̇t + gk̄j(t)∇jS(ωϕt)∇k̄ ϕ̇t

= −D∗ϕt
Dϕt ϕ̇t + gk̄j∇j ϕ̇t∇k̄S(ωϕt)

(2.8)

where Dϕt : C∞(X, C)→ C∞(Ω0,1X⊗Ω0,1X) defined by

Dϕt f :=
(
∇ωϕt

k̄ ∇
ωϕt
q̄ f

)
dz̄k ⊗ dz̄q.

Now, we consider a one form

αϕ(v) =
∫

X
v(S̄− S(ωϕ))ω

n
ϕ

on Kω, where S̄ =
∫

X S(ω̃)ω̃n is the average of scalar curvature for any ω̃ ∈ [ω]. Note
that S̄ is independent to the choice of ω̃. Via some tensor calculus, one can check that α

is closed, namely d
dt αϕ+tψ(v)

∣∣∣
t=0

= 0. Since Kω is contractible and α is closed, there is a
functionalM on Kω such that dM = α and this is called the Mabuchi functional.

Definition 2.3 ([Mab87]). — The Mabuchi functionalM : Kω → R is defined by

d
dt
M(ϕt) =

∫
X

ϕ̇t(S̄− S(ωϕt))ω
n
ϕt

.

By definition a critical point of M gives a constant scalar curvature metric. Chen
[Che00a] showed the following closed formula forM:

M(ϕ) = J(ϕ) + S̄I(ϕ) +
∫

X
log
(

ωn
ϕt

ωn

)
ωn,

where

J(ϕ) := −
n−1

∑
j=0

1
(j + 1)!(n− j− 1)!

∫
X

ϕ Ric(ω) ∧ωn−j−1 ∧ (ddc ϕ)j

and

I(ϕ) :=
n

∑
j=0

1
(j + 1)!(n− j)!

∫
X

ϕωn−j ∧ (ddc ϕ)j.
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Proposition 2.8 ([Mab87]). — If smooth Mabuchi geodesics exist, the Mabuchi functional
M is convex along them. Indeed, the second variational formula ofM is

d
dt
M(ϕt)

=
∫

X

(
ϕ̈t(S̄− S(ωϕt) + ϕ̇t

[
D∗ϕtDϕt ϕ̇t − gk̄j∂jS(ωϕt)∂k̄ ϕ̇t)

]
+ ϕ̇t(S̄− S(ωϕt))∆ωϕt

ϕ̇t

)
ωn

ϕt .

Then, plugging in the geodesic equation (2.5), we have

d
dt
M(ϕt) =

∫
X

∣∣Dϕt ϕ̇t
∣∣2
ωϕt

ωn
ϕt
≥ 0.

Unfortunately, smooth Mabuchi geodesics rarely exist.
In [BB17], Berman and Berndtssom proved the Mabuchi functional is convex along

“weak geodesics" (a term which we shall explain in Section 3). Besides, Berman and
Berndtssom also showed how the convexity ofM yields the uniqueness of cscK metrics
up to some element in the identity component of the group of biholomorphisms.

Theorem 2.9 ([BB17]). — For any Kähler class [ω] the Mabuchi functionalM is convex along
weak geodesic ϕt connecting any two points ϕ0 and ϕ1 in Kω.

Theorem 2.10 ([BB17]). — Given two cohomologous Kähler metrics ω0, ω1 on X with con-
stant scalar curvature, there exists an element f in Aut0(X) such that ω0 = f ∗ω1.

3. Main Theorem

3.1. Statement of main estimates and applications. — Before stating the main theo-
rem, we introduce some terminology.

Definition 3.1. —
(i) X is said to be a complex manifold with boundary if it is a smooth manifold with

boundary and it is endowed coordinate system

Uj '
{

z ∈ BR
∣∣ rj(z) ≤ 0

}
where B is a ball in Cn and rj is a locally defining function of the boundary, namely
BR ∩ ∂X = {rj = 0} and BR ∩ X = {rj < 0}.

(ii) The holomorphic tangent bundle of ∂X, Th
∂X, is the biggest complex subbundle of

TX containing T(∂X), in other words Th
∂X = T(∂X) ∩ JT(∂X) where J ∈ End(TX)

is the complex structure of X.
(iii) The Levi form L∂X,ν is a Hermitian form on Th

∂X defined by

L∂X,ν =
1

ν · r ddcr|Th
∂X

where ν is the outward pointing unit normal vector field to ∂X with respect to a
given metric ω.

(iv) ∂X is called weakly (strictly) pseudo-concave (resp. weakly (strictly) pseudo-
convex) if L∂X,ν ≤ 0(< 0) (resp. L∂X,ν ≥ 0(> 0)).
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The case which we mainly concern in this section is a compact Kähler manifold
(X, ω) with boundary and dimC X = n. We are going to investigate the following
equation

(ω + ddc ϕ)n = eFωn, (3.1)
where ϕ is ω-psh, ϕ|∂X = 0 and F is a smooth function such that

(i) −A0 ≤ F ≤ 0;
(ii) supX |∇F|ω ≤ A1;

(iii) ∆ωF ≥ −A2.
The main theorem provides a priori estimates, concatenating lots of works by

Caffarelli-Kohn-Nirenberg-Spruck [CKNS85], Guan [Gua98], Chen [Che00b], Błocki
[Bł12], Boucksom [Bou12], and Chu-Tosatti-Weinkove [CTW17].

Theorem 3.1 (Main Theorem). —
(A) [Bou12]: There is a constant C > 0 which does not depend on ϕ and A0, A1, A2 such that

sup
X
|ϕ|+ sup

∂X
|∇ϕ| ≤ C. (3.2)

(B) [Bou12]: There exists a constant C > 0 only depending on A2 such that

sup
X
|∆ϕ| ≤ C

(
1 + sup

∂X
|∆ϕ|

)
. (3.3)

(C) [CKNS85, Gua98, Che00b, Bł12, Bou12]: There exists C(A0, A1) > 0 such that

sup
∂X

∣∣∇2ϕ
∣∣ ≤ C

(
1 + sup

X
|∇ϕ|2

)
. (3.4)

Furthermore, if we assume that the boundary of X is weakly pseudo-concave, then the
constant C only depends on A1.

(D) [Che00b, Bou12]: There exists C(A0, A1, A2) > 0 such that

sup
X
|∇ϕ| ≤ C. (3.5)

If ∂X is weakly pseudo-concave, the constant C only depends on A1 and A2.
(E) [CTW17]: There exists a constant C(A0, A1, A2) > 0 such that

sup
X

∣∣∇2ϕ
∣∣ ≤ C, (3.6)

and C = C(A1, A2) if the boundary is weakly pseudo-concave.

Smooth ω-psh solutions for the Dirichlet problem of Monge-Ampère operator are
provided by the following subsolution criterion:

Corollary 3.2 ([CKNS85, Gua98, Bou12]). — Let (X, ω) be an n-dimensional compact Käh-
ler manifold with boundary. Given f ∈ C∞(∂X) and a smooth volume form µ, there exists a
unique smooth ω-psh solution ϕ to the Dirichlet problem{

(ω + ddc ϕ)n = µ

ϕ|∂X = f
(3.7)



10 CHUNG-MING PAN

if and only if there is a subsolution ψ ∈ PSH(X, ω) ∩ C∞(X̄) such that{
(ω + ddcψ)n ≥ µ

ψ|∂X = f .
(3.8)

The main theorem also yields the C1,1-estimate for the geodesic problem. We say that
a bounded function Φ on X × A is a weak geodesic connecting ϕ0 and ϕ1 if π∗ω +
ddc

X×AΦ ≥ 0 weakly on X× A, and Φ solves (2.6) in the sense of Bedford-Taylor, i.e. in
the sense of Radon measure.

Corollary 3.3 ([CTW17]). — Given any compact Kähler manifold (X, ω) and any two po-
tentials in Kω, the weak geodesic Φ connecting them belongs to C1,1(X× A).

3.2. Strategy of the proof. — Now, we briefly explain the procedures and the ideas of
proving main theorem.

(a) C0-estimate and boundary C1-estimate (A): The lower bound of ϕ is proved by the
maximum principle for the complex Monge-Ampère operator. Then, we will con-
struct an obstacle function h which only depends on background data to control
the upper bound. Hence, the normal direction on the boundary is bounded by the
normal derivative of h, and the tangential derivatives are controlled by assump-
tion.

(b) Laplacian-estimate (B): This estimate is a direct consequence of Yau’s celebrated
inequality which we will state later (refer to page 350 in [Yau78]).

(c) Boundary C2-estimate (C): This part can be assort into three steps. First of all, the
tangent-tangent derivative is obvious by assumption. Secondly, we will construct
a barrier function w involving tangent-normal direction and then use maximum
principle to control w. Finally, we introduce a lemma in [Bou12] which yields the
normal-normal derivative immediately.

(d) C1-estimate (D): Concatenating (B) and (C), we obtain

sup
X
|∆ϕ| ≤ C

(
1 + sup

X
|∇ϕ|2

)
. (3.9)

Then, we will use a blow up argument to prove by contradiction.
(e) C2-estimate (E): This is the most complicated step. We apply the maximum prin-

ciple to the quantity

Q = log λ1(∇2ϕ) + h(|∂ϕ|2ω)− Aϕ

where λ1(∇2ϕ) is the first eigenvalue of the matrix ∇2ϕ and h(s) = − 1
2 (1 +

supX |∂ϕ|2ω − s). Although the first eigenvalue may not be smooth, locally we
can perturb ∇2ϕ into another matrix with same smooth first eigenvalue around a
maximum point of Q. Since the computation is quite complicated, we only sketch
it in Section 6.
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3.3. Toolbox. — In this subsection, we introduce some well-known tricks and they
also play important roles in the proof of main estimates.

The maximum principle for the complex Monge-Ampère operator is a common tech-
nique to prove the uniqueness and it also plays an important role in the prove of C0-
estimate (A).

Lemma 3.4 (Maximum Principle). — Let (X, ω) be a compact Kähler manifold with bound-
ary and let ϕ0, ϕ1 are two smooth and strictly ω-psh functions such that{

ϕ0 ≤ ϕ1 on ∂X;
(ω + ddc ϕ1)

n ≤ (ω + ddc ϕ0)n on X.
(3.10)

Then, we have ϕ0 ≤ ϕ1 on X.

Proof of the maximum principle. — Write

0 ≤ (ω + ddc ϕ0)
n − (ω + ddc ϕ1)

n = ddc(ϕ0 − ϕ1) ∧ T = L(ϕ0 − ϕ1)

where T = ∑n−1
j=1 (ω + ddc ϕ0)j ∧ (ω + ddc ϕ1)

n−j−1 is a strictly positive smooth (n −
1, n− 1)-form and this implies that L = ddc(•) ∧ T is a linear elliptic operator. Hence,
ϕ0 − ϕ1 ≤ 0 by the linear elliptic maximum principle.

The following inequality is a key ingredient for the second order estimate in Yau’s
proof of Calabi conjecture and we will use it to prove the Laplacian estimate (B).

Lemma 3.5 ([Yau78, p.350]). — If ϕ is a solution of equation (3.1), then ϕ has the following
estimate

eBϕ∆ωϕ e−Bϕ(n + ∆ϕ)

≥∆F− n2(inf
i 6=j

Riīj j̄)− Bn(n + ∆ϕ) + (B + inf
i 6=j

Riīj j̄)e
− F

n−1 (n + ∆ϕ)1+ 1
n−1

(3.11)

in the normal coordinate system, where B is a constant such that B + (infi 6=j Riīj j̄) > 1.

Implicit function theorem of Banach spaces and elliptic estimates are crucial tools in
the proof of Corollary 3.2. One can see textbooks [Aub98] and [GT01] for more details.

Lemma 3.6 (Implicit Function Theorem for Banach Spaces)
Let X ,Y and Z be Banach spaces. Suppose F : X × Y → Z is Ck and let DyF(x0, y0) ∈

Hom(Y ,Z) be the differential at y0 of the mapping y 7→ F(x0, y). If at (x0, y0) ∈ X ×Y , the
linear map DyF(x0, y0) is invertible, then the map (x, y) 7→ (x,F(x, y)) is a Ck diffeomorphism
of a neighborhood U(x0,y0) ⊂ X ×Y of (x0, y0) onto an open set X ×Z .

Lemma 3.7 (Schauder Estimates). — Let Ω be a bounded Ck+2,α domain, and suppose that
0 < α < 1 and k ∈ N. For a uniformly elliptic second order operator L, there is a constant C
depending only on L, k, α and the domains Ω such that if L(u) = f and u = v on ∂Ω for some
f ∈ Ck,α(Ω̄), v ∈ Ck+2,α(Ω̄), then we have

‖u‖Ck+2,α(Ω) ≤ C
(
‖u‖C0(Ω) + ‖v‖Ck+2,α(Ω) + ‖ f ‖Ck,α(Ω)

)
.
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3.4. C0-estimate and boundary C1-estimate (A). — We establish here the proof of (A).
Recall that we assume F ≤ 0. Immediately, we have ϕ ≥ 0 by the maximum principle
for the Monge-Ampère operator.

We now defined the obstacle function h ∈ C∞(X̄) as the solution to the Dirichlet
problem {

∆h = −n
h|∂X = 0

. (3.12)

Thus, we have
∆(ϕ− h) = ∆ϕ + n = trω(ω + ddc ϕ) ≥ 0.

Also this implies ϕ ≤ h by the standard maximum principle. Therefore, we obtain the
C0-estimate 0 ≤ ϕ ≤ h. Regarding the boundary C1-estimate, since ϕ|∂X = h|∂X = 0
and 0 ≤ ϕ ≤ h, the normal derivative of ϕ is bounded by the normal derivative of h
and the tangential derivative is trivial.

3.5. Laplacian estimate (B). — We prove here (B). Let x0 be a point where e−Bϕ(n +
∆ϕ) achieves its maximum. If x0 ∈ ∂X, then we have

sup
X

(n + ∆ϕ) ≤ eB(supX ϕ−infX ϕ) sup
∂X

(n + ∆ϕ).

The oscillation of ϕ is bounded by C0-estimate (A). On the other hand, if x0 in a interior
maximum point, we then get

(n + ∆ϕ)1+ 1
n−1 ≤ e

F
n−1 Bn(n + ∆ϕ) + e

F
n−1

(
−∆F + n2(inf

i 6=j
Riīj j̄)

)
by the inequality of Yau in Lemma 3.5. Note that y1+ 1

n−1 ≤ ay + b implies either
y1+ 1

n−1 ≤ 2ay or y1+ 1
n−1 ≤ 2b. Therefore, we have 0 < (n + ∆ϕ) ≤ C(sup F ≤

0, sup(−∆F) = A2) at x0. Combing with the C0-estimate (A), we then complete the
proof of the interior Laplacian estimate (B).

3.6. Apply to the existence criterion and the geodesic problem. —

Proof of Corollary 3.2. — After replacing ω by ω+ddcψ and ϕ by ϕ−ψ, we may assume
ψ = 0, and (ω + ddc ϕ)n = eFωn for some smooth non-positive function F such that
µ = eFωn. Then, we follow the continuity method to complete the proof. The method
of continuity proceeds by creating a one parameter family of equations which connect
the equation of interest to an equation which solution is easily obtained. In our case,
we choose the family of equations

(ω + ddc ϕt)
n = etFωn, ω + ddc ϕt > 0, and ϕt|∂X = 0 (3.13)

parameterized by t ∈ [0, 1]. Denote by I the set of t ∈ [0, 1] for which equation has a C∞

solution. We have to prove three points:
(i) I is non-empty;

(ii) I is open in [0, 1];
(iii) I is closed in [0, 1].
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Obviously, when t = 0, ϕ0 = 0 is a solution, so 0 ∈ I and I is non-empty.
Step 1 Openness: To show the openness of I, we consider a solution ϕt where t ∈ I
and use the implicit function theorem for Banach space to say that there is an open
neighborhood Ut which lies in I.

Now, we consider the non-linear map F between two Banach spaces

F : [0, 1]×
(
C2,α(X) ∩ {u|∂X = 0}

)
C0,α(X)

where

F(t, ϕt) := log
(
(ω + ddc ϕt)n

ωn

)
− tF.

Hence, F(0) is the set of C2,α solution to the Monge-Ampère equation (3.13). To apply
the implicit function theorem, we must show the linearized operator of F is invertiable

D2F(t,ϕt)(v) =
d
dε

F(t, ϕt + εv)
∣∣∣∣
ε=0

= ∆ωϕt
v

where v ∈ C2,α(X) ∩ {u|∂X = 0}. Since we only consider the zero boundary condition,

ker
(

D2F(t,ϕt)

)
= 0 by the maximum principle. On the other hand, surjectivity fol-

lows from standard elliptic theory. Hence, D2F(t,ϕt) is invertible. By implicit function
theorem, the map (t, ψ) 7→ (t,F(t, ψ)) is a C1-diffeomorphism near (t, ϕt). Thus, for
F = 0, we obtain a C1 map (t− ε, t + ε) → C2,α(X) ∩ {u|∂X = 0} given by t 7→ ϕt with
F(t, ϕt) = 0.

Next, we must prove that ϕt is smooth. We only have to say that ∂k ϕt satisfies a
linear elliptic equation and then use elliptic regularity to conclude. Since F(t, ϕt) = 0,
we have log

(
(ω+ddc ϕt)

ωn

)
= tF. Since ϕt ∈ C2,α, we can use ∂k to differentiate on both

side, and then we obtain

∆ωϕt
(∂k ϕt) = ∂k(tF) + gi j̄∂k(gi j̄)− gi j̄

ϕt ∂k(gi j̄).

Right hand side belongs to C0,α and the coefficients of ∆ωϕt
are in C0,α. Applying

Schauder estimate, ∂k ϕt lies in C2,α for all k. Similarly, ∂k̄ ϕt ∈ C2,α and hence ϕt ∈ C3,α.
Therefore, we have ϕt is smooth by the bootstrapping argument.
Step 2 Closedness: From Theorem 3.1, we already have the uniform C2-estimate.
Evans-Krylov estimate yields the interior C2,α estimate for some α > 0 as long as a C2

estimate is available. Similarly, Theorem 1 in [CKNS85] said that we have C2,α estimate
up to the boundary in a similar situation.

To show I is closed, it is equivalent to say that if we can solve the equation (3.13)
for all t < t0, then we can take a limit and it also solve (3.13). Applying Arzela-Ascoli
theorem, there is a subsequence ti → t0 such that ϕti converges to ϕt0 in C2,α′ for fixed
α′ < α. Note that ϕt0 satisfies

(ω + ddc ϕt0)
n = et0Fωn.

Similar to the bootstrapping argument which we already showed in the proof of open-
ness, we can conclude that ϕt0 is smooth and hence t0 ∈ I. These complete the proof of
Corollary 3.2.
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Proof of Corollary 3.3. — Recall the degenerate complex Monge-Ampère related to the
Dirichlet problem of geodesic equation (2.6): aims to find the function solving the fol-
lowing equation 

(π∗ω + ddc
X×AΦ)n+1 = 0,

Φ(x, 0) = ϕ0(x),
Φ(x, 1) = ϕ1(x).

The strategy is to find solutions Φε of the “ε-geodesic" equations:
(

π∗ω + idτ ∧ dτ̄ + ddc
X×A(Φε − |τ|2)

)n+1
= επ∗ωn ∧ idτ ∧ dτ̄,

Φε(x, 0) = ϕ0(x),
Φε(x, 1) = ϕ1(x),

(3.14)

where τ is the parameter of the annulus A := {τ ∈ C | 1 < |τ| < e} and then let ε tend
to zero to obtain the solution.

To solve ε-geodesic equations, we need to construct a subsolution to the Dirich-
let problem (3.14) and then use Corollary 3.2 to obtain smooth solutions. Consider a
smooth function χ : [0, 1]→ [0, 1] such that{

χ(t) = 1 when t ∈
[
0, 1

4

]
,

χ(t) = 0 when t ∈
[ 3

4 , 1
]

.

We also denote χ(log |τ|) by χ. Let u be a strictly subharmonic function on A with
u|∂A = 0. For instance, we can choose

u(x) = − log dist(x, ∂Aδ)− Cδ

where Aδ = {τ ∈ C | 1− δ < |τ| < e + δ} and Cδ is a constant such that u = 0 on ∂A.
Then, we have(

π∗ω + idτ ∧ dτ̄ + ddc[χϕ0 + (1− χ)ϕ1 + Cu− |τ|2]
)n+1

≥ ε(π∗ω + idτ ∧ dτ̄)n+1

for C large enough and ε sufficiently small. To see this, it is sufficient to show π∗ω +

idτ ∧ dτ̄ + ddc[χϕ0 + (1 − χ)ϕ1 + Cu − |τ|2] is positive definite for C large enough.
Indeed,

π∗ω + idτ ∧ dτ̄ + ddc[χϕ0 + (1− χ)ϕ1 + Cu− |τ|2]
= χπ∗ωϕ0 + (1− χ)π∗ωϕ1 + i

(
∂χ ∧ ∂̄(ϕ0 − ϕ1) + ∂(ϕ0 − ϕ1) ∧ ∂̄χ

)
+ Cddcu.

Thus, it is reduced to a linear algebra exercise: can we enlarge C such that

Ã =

[
An×n bn×1
b∗1×n C1×1

]
(n+1)×(n+1)

is positive definite if we assume A to be positive definite? The answer is yes, because

we can consider an elementary matrix E =

[
Idn×n 0
−b∗A−1 1

]
and then

EÃE∗ =
[

A 0
0 C− b∗A−1b

]
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is positive definite for C sufficiently large. Hence, χϕ0 + (1 − χ)ϕ1 + Cu − |τ|2 is a
subsolution and the boundary condition coincide with the boundary constraint of Φε−
|τ|2, as desired.

Now, we have obtained solutions of the ε-geodesic equations for ε small enough by
Corollary 3.2. From Theorem 3.1, we have the uniform estimate ‖Φε‖C2(X×A) ≤ C for
some uniform constant C which does not depends on the lower bound of ε. Hence, by
Arzela-Ascoli theorem, there is a subsequence Φεi converging to Φ in C1. Since ∇Φε is
1-Lipschitz with uniform Lipschitz constant, we can conclude that Φ lies in C1,1(X ×
A) and it is a solution to Dirichlet problem of degenerate complex Monge-Ampère
equation (2.6) by the continuity properties of complex Monge-Ampère operator.

4. Proof of Main Theorem: boundary C2-estimate

To prove the boundary C2-estimate (C), we have to consider three different directions:
tangent-tangent, tangent-normal, and normal-normal derivatives. Note that locally the
tangential operators are

Dk =
∂

∂xk
− rxk

rx2n

∂

∂x2n

for k = 1, · · · , 2n− 1 and the normal operator is

D2n = − 1
rx2n

∂

∂x2n
.

Indeed, these form a dual basis corresponding to dx1, · · · , dx2n−1, dr.

4.1. Tangent-tangent derivative DiDj ϕ. — This part is trivial by the boundary as-
sumption ϕ|∂X = 0.

4.2. Tangent-normal derivative D2nDk ϕ. — To prove the tangent-normal direction,
we first consider a barrier function of the form

v := ϕ + sh− Nd2,

in a boundary local chart Ωδ = X ∩ Bδ(0) and 0 corresponds to the point which we
want to estimate on the boundary, where d is the distance function to the boundary.
The main ingredient is the following lemma.

Lemma 4.1 ([Gua98, Che00b]). — For N sufficiently large and s, δ sufficiently small,

∆ωϕ v ≤ − ε

4

(
1 +

n

∑
α=1

g̃αᾱ

)
in Ωδ, and v ≥ 0 on ∂Ωδ, where ε is a local lower bound of ω, g̃ is the associated metric of ωϕ.

Proof of Lemma 4.1. — Note that gjk̄ ≥ εδjk in Ωδ. Then, we have

∆ωϕ ϕ = ∑
j,k

g̃jk̄
(

gjk̄ + ϕjk̄ − gjk̄

)
≤ n− ε ∑

α

g̃αᾱ.
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and

∆ωϕ h ≤ C1

(
1 + ∑

α

g̃αᾱ

)
for some constant C1 which only depends on the background data. Moreover,

∆ωϕ Nd2 = 2N(dN∆ωϕ d + g̃jk̄djdk̄).

Observe that

∆ωϕ d ≥ −C2

(
1 + ∑

α

g̃αᾱ

)
for some constant C2 depending only on the background data. On the other hand, since
dxk(0) = 0 for all k < 2n and dx2n(0) = 1, we have, for δ small enough

∑
j,k

g̃jk̄djdk̄ ≥ g̃nn̄dndn̄ + ∑
k<n

(g̃nk̄dndk̄ + g̃kn̄dkdn̄) ≥
g̃nn̄

8
− C3δ ∑

α

g̃αᾱ

in Ωδ after shrinking δ. Suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of g̃jk̄. Then,
∑α g̃αᾱ = ∑α λ−1

α and g̃nn̄ ≥ λ−1
n . Hence,

∆ωϕ v

≤n− ε ∑
α

g̃αᾱ + sC1

(
1 + ∑

α

g̃αᾱ

)
+ 2N

(
δ(C2 + C3)

(
1 + ∑

α

g̃αᾱ

)
− g̃nn̄

8

)
.

(4.1)

Note that
ε

4 ∑
α

g̃αᾱ +
N
4

g̃nn̄ ≥ nε

4
N

1
n

(
λ−1

1 · · · λ
−1
n

) 1
n ≥ C4N

1
n

for ε small enough. Now we fix s > 0 sufficiently small such that sC1 ≤ ε
4 , and choose

N sufficiently large so that −C4N
1
n + n + sC1 ≤ − ε

4 . After shrinking δ again such that
2Nδ(C2 + C3) ≤ ε

4 , we obtain

∆ωϕ v ≤ − ε

4

(
1 + ∑

α

g̃αᾱ

)
in Ωδ.

Recall that ∆h = −n. Then there exists a constant c which depends only on ω such
that h > cd in Ωδ. On X ∩ ∂Bδ(0), v ≥ scd− Nd2 ≥ (sc− Nδ)d ≥ 0 for δ sufficiently
small. On ∂X ∩ Bδ(0), we have v ≡ 0. These complete the proof of the key lemma.

The barrier function w which we mainly consider to get the control on D2nDk ϕ is

w := Dk ϕ− C′ϕ2
x2n−1

+ Av + B |z|2

where A, B and C′ are constants to be determined and Dk := ∂
∂xk

+ a ∂
∂x2n

.
We claim that

w ≥ 0 on Ωδ and w(0) = 0.
If this is the case, we can control the tangent-normal derivatives as follows. Clearly,

∂

∂x2n
w(0) ≤ 0
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and this implies
∂

∂x2n
Dk ϕ(0) ≤ −A

∂

∂x2n
v(0)

because we can eliminate the effect of ϕx2n−1(0) after some rotation of coordinates such
that D2n−1 = ∂

∂x2n−1
at 0. We also claim that A ≤ CM where M = (1 + supX |∇ϕ|2) and

C is a constant which only depends on background data. Recall that v = ϕ + sh− Nd2,
so everything is controlled by boundary C1-estimate (A) and given data.

Now, we work out the detail of the claim. Note that

∆ωϕ(Dk ϕ) = trωϕ(Dkddc ϕ) + (∆ωϕ a)ϕx2n + trωϕ(∂a ∧ ∂̄ϕx2n + ∂ϕx2n ∧ ∂̄a)

= DkF + trω(Dkω)− trωϕ(Dkω) + (∆ωϕ a)ϕx2n + trωϕ(∂a ∧ ∂̄ϕx2n + ∂ϕx2n ∧ ∂̄a)

Observe that g̃pq̄ g̃nq̄ = δ
p
n and ∂

∂x2n
= 2i ∂

∂zn
− i ∂

∂x2n−1
and we set t = x2n−1. Then ϕx2n q̄ =

2iϕnq̄ − iϕx2n−1 q̄. Thus, by Cauchy-Schwarz, we have∣∣trωϕ(∂a ∧ ∂̄ϕx2n)
∣∣ = ∣∣∣g̃jk̄aj(ϕx2n k̄)

∣∣∣ = ∣∣∣g̃jk̄aj(2ϕnk̄ − ϕtk̄)
∣∣∣

=
∣∣∣2an − 2g̃jk̄ajgnk̄ − g̃jk̄aj ϕtk̄

∣∣∣
≤ C5

1 +

(
∑
α

g̃αᾱ

) 1
2 (

g̃jk̄(1 + ϕjt ϕk̄t)
) 1

2


≤ C5

[
1 + ∑

α

g̃αᾱ + g̃jk̄ ϕjt ϕk̄t

]
(4.2)

where C5 is a constant only depending on supΩδ
|∇a|. Combining all of these ingredi-

ents, we obtain

∆ωϕ(Dk ϕ) ≤ C

(
1 + ∑

α

g̃αᾱ

)
+ 2C5

[
1 + ∑

α

g̃αᾱ + g̃jk̄ ϕjt ϕk̄t

]
+ C6M

(
∑
α

g̃αᾱ

)
(4.3)

where C = C(A1) and C6 is a constant only depending on supΩδ

∣∣∇2a
∣∣. Furthermore,

∆ωϕ ϕ2
t = 2g̃jk̄ ϕjt ϕk̄t + 2ϕt

(
Ft + gjk̄∂tgjk̄ − g̃jk̄∂tgjk̄

)
≥ 2g̃jk̄ ϕjt ϕk̄t − 2CM

(
1 + ∑

α

g̃αᾱ

)
(4.4)

Then, we choose C′ = C5 to eliminate g̃jk̄ ϕjt ϕk̄t, so we have

∆ωϕ w ≤
(
− εA

4
+ B + C + 2C5 + C6M + 2CC5M

)(
1 + ∑

α

g̃αᾱ

)
(4.5)

by previous steps and Lemma 4.1.
Now, we can fix B large enough such that w ≥ 0 on ∂Ωδ, since v ≥ 0 is proved.

Note that this B depends on M of order 1. Then, we choose A sufficiently large to get
∆ωϕ w ≤ 0 and A depends on M of order 1. In sum, w ≥ 0 on Ωδ by maximum principle
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and w(0) = 0. This completes the proof of the claim. Finally, we replace Dk by −Dk to
get the other side bound.

4.3. Normal-normal derivative D2nD2n ϕ. — Before proving the uniform bound on
Normal-Normal derivative, we have to introduce a key lemma.

Lemma 4.2 ([CKNS85, Gua98, Bou12]). — There exists ε > 0 only depending on A0 such
that

(ω + ddc ϕ)|Th
∂X
≥ ε ω|Th

∂X
.

In particular, if ∂X is weakly pseudo-concave, we can even take ε = 1.

We first use Lemma 4.2 to show the normal-normal estimate and then back to prove
the lemma in next subsection.

Since we already showed that DiDj ϕ(0) and D2nDj ϕ(0) in Tangent-Tangent estimate,
and Tangent-Normal estimate, to show |Dx2n Dx2n ϕ(0)| ≤ CM is equivalent to prove
that |ϕnn̄(0)| ≤ CM, where M = (1 + supX |∇ϕ|2) again. Note that we have

|ϕkn̄(0)| ≤ CM

for all k = 1, · · · , n − 1. Expanding out the determinant det(g̃jk̄)1≤j,k≤n at 0 by linear
algebra, we have

det(g̃jk̄)1≤j,k≤n = g̃nn̄ det(g̃jk̄)1≤j,k≤n−1 + ∑
j
(−1)n−j g̃nj̄ det(Aj)

where Aj is controlled by CM since it only involves tangent-tangent and tangent-
normal derivatives. Then, we obtain∣∣∣det(g̃jk̄)1≤j,k≤n − g̃nn̄ det(g̃jk̄)1≤j,k≤n−1

∣∣∣ ≤ CM (4.6)

at 0. Recall that the Monge-Ampère equation is (ω + ddc ϕ)n = eFωn and F ≤ 0 by
assumption. We have

0 ≤ det(g̃jk̄)1≤j,k≤n = det(gjk̄ + ϕjk̄)1≤j,k≤n ≤ det(gjk̄)1≤j,k≤n ≤ C.

These imply ∣∣∣g̃nn̄ det(g̃jk̄)1≤j,k≤n−1

∣∣∣ ≤ CM. (4.7)

Next, we show that there is a uniform lower bound for det(g̃jk̄)1≤j,k≤n−1. Recall that
Th

∂X is spanned by { ∂
∂z1 , · · · ∂

∂zn−1 } at 0 and by Lemma 4.2

(ω + ddc ϕ)|Th
∂X
≥ ε(A0) ω|Th

∂X
.

Obviously, we get
det(g̃jk̄)1≤j,k≤n−1 ≥ C′′(A0) := εn−1(A0) (4.8)

at 0. In sum, combining (4.7) and (4.8), we have

|ϕnn̄| ≤ |g̃nn̄ − gnn̄| ≤
CM

C′′(A0)
(4.9)

at 0, as desired.
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4.4. Proof of Lemma 4.2. —

Proof of Lemma 4.2. — First of all, we begin from the weakly pseudo-concave cases. We
have ϕ ≥ 0 from the C0-estimate (A) and ϕ|∂X = 0 by the assumption. Thus, ν · ϕ < 0
and ν · r > 0 on ∂X. Recall that

ddc ϕ|Th
∂X

=
ν · ϕ
ν · r ddcr|Th

∂X
.

Since ∂X is weakly pseudo-concave, namely ddcr|Th
∂X
≤ 0, we obtain

ddc ϕ|Th
∂X
≥ 0

and hence
(ω + ddc ϕ)|Th

∂X
≥ ω|Th

∂X
.

Before proving the general cases, we put some simple remarks

Remark 4.1. — We can choose a coordinate on BR(0) centered at 0 such that

r = −x2n +<
(

∑
1≤j,k≤n

ajkzj z̄k

)
+ O(|z|3). (4.10)

One can see [Bou12, p.266] for more details.

Remark 4.2. — Assume that rxk(0) = 0 for all k = 1, · · · , 2n− 1 and rx2n(0) = −1. By
simple calculus, we have

( f |∂X) xk |∂X
(0) = fxk(0) + rxk(0) fx2n(0) (4.11)

and
( f |∂X) xj|∂X

xk |∂X
(0) = fxjxk(0) + rxjxk(0) fx2n(0) (4.12)

for any given smooth function f near 0. In particular, if we consider a smooth function
f on X and f |∂X = 0, then we have

ddc f |Th
∂X

=
ν · f
ν · r ddcr|Th

∂X
(4.13)

where ν is the outward pointing unit normal vector field to ∂X.

Now, we are going to prove the general case and say that ε is a constant only depend-
ing on A0. It suffices to show that there exists ε(A0) such that

(ω + ddc ϕ)|Th
∂X
≥ ε ddcr|Th

∂X
. (4.14)

We prove this claim first. According to Remark 4.2, we have

(ddc ϕ)|Th
∂X

=
ν · ϕ
ν · r ddcr|Th

∂X
.

By the boundary C1-estimate (A), there is a constant C only depending background data
such that −C ≤ ν·ϕ

ν·r ≤ 0 on ∂X. Then,

(ω + ddc ϕ)|Th
∂X
≥ ε ddcr|Th

∂X
≥ ε

−C
ddc ϕ|Th

∂X
=

ε

−C
(ω + ddc ϕ−ω)|Th

∂X
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and this implies the desired result

(ω + ddc ϕ)|Th
∂X
≥ ε

C

(
1 +

ε

C

)−1
ω|Th

∂X
.

To prove (ω + ddc ϕ)|Th
∂X
≥ ε ddcr|Th

∂X
(4.14), it is enough to consider ddcr(v) > 0

where v = ∑j≤n vj
∂

∂zj
∈ Th

∂X,0 with ∑
∣∣vj
∣∣2 = 1. We may assume v = ∂

∂z1
and the

coefficients in (4.10) (ajk)1≤j,k≤n is diagonal after some unitary transformation.
Step 1 Good choice of Kähler potential: Let ρ be a potential function with ddcρ = ω
and ρ(0) = 0. We claim that ρ can be chosen to satisfy the following estimate

ρ|Th
∂X
≤ <

(
n

∑
j=2

cjz1z̄j

)
+ O(|z2|2 + · · ·+ |zn|2). (4.15)

Recall the elementary formula in Remark 4.2. We have

( f |∂X) z1|∂X z̄k |∂X
(0) = fz1 z̄k(0) + δ1ka11 fx2n(0)

for all k < n. Applying on the formula

0 = r = x2n +<
(

∑
1≤j,k≤n

ajkzj z̄k

)
+ O(|z|3),

we get

x2n|∂X = a11 |z1|2 + x2n−1<(bz1) + q(x′) + O(|z1|4 + |z2|2 + · · · |zn−1|2 + x2
2n−1) (4.16)

where q is a homogeneous cubic polynomial and each term involving x1 or x2 of order 2
and x′ = (x1, x2, · · · , x2n−1). Note that, in q(x′), the cubic term on (x1, x2) has a unique
decomposition

<(a′z3
1 + b′z1 |z1|2),

the terms that are quadratic in (x1, x2) can be written in the form

<
(

n−1

∑
j=2

z2
1(a′1jzj + a′1 j̄ z̄j)

)
+<

(
n−1

∑
j=2

b′jzj |z1|2
)

.

After shrinking the radius δ of the coordinate chart Ωδ := X ∩ Bδ(0), we have

(a11 − ε) |z1|2 ≤ x2n − x2n−1<(bz1) + O(|z2|2 + · · ·+ |zn−1|2 + x2
2n−1) ≤ (a11 + ε) |z1|2 ,

(4.17)
because we assume ddcr(v) = a11 > 0 in the beginning . Regarding the potential
function ρ, we may assume that

(ρ|∂X) z1|∂X z̄1|∂X
= ρz1 z̄1(0) + ρx2n(0)a11 = 0. (4.18)

Indeed, we can replace ρ by ρ − λx2n and choose appropriate λ such that ρz1 z̄1(0) +
ρx2n(0)a11 = 0. Note that this modification does not change the condition ddcρ = ω.
Hence, on ∂X ∩ Bδ(0), ρ is expanded in a Taylor series

ρ|∂X = ∑
1≤α,β≤2n−1

γαβxαxβ + p(x′) + O(x′).
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where p is a homogeneous cubic polynomial. We may assume γ11 = γ12 = γ22 = 0.
Indeed,

γ11x2
1 + 2γ12x1x2 + γ22x2

2 = <(ãz2
1) + b̃ |z1|2

for some constant ã ∈ C, b̃ ∈ R and we already have b = 0 from (4.18). Note that
ddcρ = ω does not change after subtracting a real part of holomorphic polynomial.
Therefore we can drop terms involving x2

1, x1x2, x2
2. To see the claim, we note that

2

∑
α=1

2n−1

∑
β=3

γαβxαxβ = <
(

n−1

∑
j=1

z1(ã1jzj + ã1 j̄)

)
+<(c̃z1x2n−1).

Thus,

∑
1≤α,β≤2n−1

γαβxαxβ = <
(

n−1

∑
j=2

z1(ã1jzj + ã1 j̄ z̄j)

)
+<(c̃z1x2n−1) + O(x2

3 + · · · x2
2n−1).

Next, in p(x′), the cubic in (x1, x2) has a unique decomposition <(Az3
1 + Bz1 |z1|2), the

terms that are quadratic in (x1, x2) can be written in the form

<
(

n−1

∑
j=2

z2
1(a′′1jzj + a′′1 j̄ z̄j)

)
+<

(
n−1

∑
j=2

c′′j zj |z1|2
)

and all the other terms are bounded by C ∑3≤β≤2n−1 x2
β. Finally, using (4.17), we can

replace |z1|2 by x2n − x2n−1<(bz1) +O(x2
3 + · · ·+ x2

2n−1), combine everything and sub-
tract real part of holomorphic polynomials to get

ρ|Th
∂X
≤ <

(
n

∑
j=2

cjz1z̄j

)
+ O(|z2|2 + · · ·+ |zn|2).

Step 2 Barrier construction: We are going to show the existence of a good barrier func-
tion b which satisfies b ≥ ρ + ϕ on Ωδ We consider the barrier function b defined by

b(z1, · · · , zn) := −ε1x2n + ε2 |z|2 +
1
µ

n

∑
j=2

∣∣cjz1 + µzj
∣∣2

where ε1, ε2 and µ are constants to be determined. Now, we want to show that we can
shrink the radius of Ωδ and then choose ε1, ε2 and µ only depending on A0 such that

b ≥ ρ + ϕ. (4.19)

on Ωδ. Recall that r = −x2n + <
(

∑1≤j,k≤n ajkzj z̄k

)
+ O(|z|3) and Ωδ ⊂ {r < 0}, so we

have ∣∣z′∣∣ ≥ |zm| ≥ xm ≥ <
(

∑
1≤j,k≤n

ajkzj z̄k

)
+ O(|z|3) (4.20)

where z′ = (z2, · · · , zn). We are going to show that b ≥ ρ + ϕ on ∂Ωδ first, and then use
the maximum principle to conclude the desired inequality on whole Ωδ.

On ∂Bδ(0) ∩ X, we have |z| = δ and a11 > 0 by assumption. We can shrink δ such
that there is a constant β > 0 with ∣∣z′∣∣2 ≥ β (4.21)
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on ∂Bδ(0) ∩ X. Otherwise, theses is a point p ∈ ∂Bδ(0) ∩ X such that |z′|2 = 0 and this
implies

0 ≥ a11 |z1|2 + O(|z1|3) = a11δ2 + O(δ3)

by (4.20) and this is not true for δ sufficiently small because we assume a11 > 0.
On ∂X ∩ Bδ(0), note that r = 0. Therefore, we can find a constant C > 0 such that

− ε1x2n + ε2 |z|2 ≥ 0 (4.22)

on ∂X ∩ Bδ(0), since −x2n +<
(

∑1≤j,k≤n ajkzj z̄k

)
+ O(|z|3) = 0 and this implies

−x2n + C |z|2 ≥ 0

for some C sufficiently large. We pick ε2 = Cε1.
Now, we are going to show that we can find some suitable µ such that b ≥ ρ + ϕ on

∂Ωδ. Note that

1
2µ

n

∑
j=2

∣∣cjz1 + µzj
∣∣2 =

1
2µ

m

∑
j=2

∣∣cjz1
∣∣2 +<( n

∑
j=2

cjz1z̄j

)
+

µ

2

∣∣z′∣∣2
the second term on the right hand side is equal to the leading order term of ρ in the
expansion (4.15), so we can choose µ large enough to control ρ. On ∂X ∩ Bδ(0), ϕ = 0
by assumption and (4.22), −ε1 |z1|+ ε2 |z| ≥ 0 on ∂X ∩ Bδ(0), we then have b ≥ ρ + ϕ
on ∂X ∩ Bδ(0). On the other hand, we already have supX |ϕ| < C from the C0-estimate
(A) and

b ≥ −ε1x2n + ε2δ2 +
µ

2

∣∣z′∣∣2 ≥ −ε1x2n + ε2δ2 +
µ

2
β

on ∂Bδ(0) ∩ X by (4.22). Then, we choose µ sufficiently large to dominate ρ and ϕ.
Next, we pick ε1 sufficiently small and only depending on µ and A0 such that

(ddcb)n ≤ e−A0 ωn ≤ eFωn = (ddc(ρ + ϕ))n.

Indeed, since

ddc(b) = ε2

n

∑
j=1

dzj ∧ dz̄j + ddc

(
1
µ

n

∑
j=2

∣∣cjz1 + µzj
∣∣)

and (
ddc

(
1
µ

n

∑
j=2

∣∣cjz1 + µzj
∣∣))n

= 0,

we have (ddcb)n = O(ε2) = O(ε1). Finally, we get b ≥ ρ + ϕ on Ωδ by the maximum
principle of complex Monge-Ampère operator.
Step 3 Conclusion: Because we already have b ≥ ρ + ϕ on Ωδ and b(0) = ρ(0) + ϕ(0),
we then obtain

(ρ + ϕ)x2n(0) ≤ bx2n(0) = −ε1.
Using the assumption of ρ, (4.18), and the direct calculation of implicit function deriva-
tive (4.2), we have

ρz1 z̄1(0) + ρx2n(0)a11 = 0
and similarly due to ϕ|∂X = 0 we get

ϕz1 z̄1(0) + ϕx2n(0)a11 = 0.
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In sum,
(ω + ddc ϕ)(v) = (ρ + ϕ)z1 z̄1(0) ≥ ε1a11 = ε1ddcr(v).

This completes the proof of Lemma 4.2.

5. Proof of Main Theorem: C1-estimate

By the interior Laplacian estimate (B) and the boundary second order estimate (C),
we have

sup
X
|∆ϕ| ≤ C

(
1 + sup

X
|∇ϕ|2

)
, (5.1)

where C depends on A0, A1 and A2 (depending only on A1 and A2 if ∂X is weakly
pseudo-concave). Suppose the C1-estimate fails, i.e. there exists a sequence of functions
ϕj and points pj ∈ X such that∣∣∇ϕj(pj)

∣∣ = sup
X

∣∣∇ϕj
∣∣ =: Cj → +∞.

We want to draw a contradiction from this statement. First, we may assume pj → p by
compactness. Then, choose a domain Ωδ := X ∩ Bδ(0) such that p corresponds to 0 in
this local coordinate. We define

ϕ̃j(z) = ϕj

(
pj +

1
Cj

z
)

for all z ∈ ΩδCj := X ∩ BδCj(0). Thus we have∣∣∇ϕ̃j(0)
∣∣ = 1 and sup

ΩδCj

∣∣∆ϕ̃j
∣∣ ≤ 2C by (5.1).

Using standard elliptic estimate and Rellich embedding theorem, we have (ϕ̃j)j is in
a compact set of C1(Ωδ). Hence, there exists a subsequence of ϕ̃j a limit function ϕ̃ in
Cn+1 (or half ball if p is on ∂X) such that in any fixed domain ΩR = X ∩ BR(0) we have
ϕ̃j → ϕ̃ in C1. This implies

|∇ϕ̃(0)| = 1. (5.2)
We can do the same rescale on h and define

h̃j(z) = h
(

pj +
1
Cj

z
)

.

Note that limj→∞ h̃j(z) = h(p). Recall that we already have

0 ≤ ϕ ≤ h

in the proof of (A). This yields
0 ≤ ϕ̃(z) ≤ h(p). (5.3)

Now, we consider two cases. When p ∈ ∂X, h(p) = 0 and hence ϕ̃ ≡ 0. However, this
contradicts to (5.2). Thus, the C1-estimate is proved in this case. On the other hand,
when p ∈ X, since

ddc ϕ̃j ≥
1

C2
j

ddc ϕj ≥ −
1

C2
j

ω,
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we can see that ϕ̃ is psh on Cn. However, ϕ̃ is uniformly bounded. Then, this yields
that ϕ̃ is constant, but it contradicts to (5.2) again.

6. Proof of Main Theorem: C2-estimate

Finally, we shall treat the C2-estimate (E). We introduce the proof of Chu–Tosatti–
Weinkove [CTW17]. Let λ1(∇2ϕ) := sup|V|=1∇2ϕ(V, V) be the maximum eigenvalue
of ∇2ϕ. Observe that ∣∣∇2ϕ

∣∣ ≤ Cλ1(∇2ϕ) + C.

This follows from ∣∣∇2ϕ
∣∣ = ( 2n

∑
j=1

λ2
j

) 1
2

≤ C (|λ1|+ |λ2n|)

and
2n

∑
j=1

λj = ∆d ϕ = 2 trω(ddc ϕ) ≥ −2n.

Therefore, the main goal is to find a uniform upper bound for λ1(∇2ϕ). To reach this
aim, we want to apply maximum principle to

Q = log λ1(∇2ϕ) + h(|∂ϕ|2ω)− Aϕ

where h(s) = − 1
2

(
1 + supX |∂ϕ|2ω − s

)
and A is a constant to be determined. Note that

Q is continuous on the domain {λ1(∇2ϕ) > 0} and achieves a maximum at a point
x0 ∈ X with λ1(∇2ϕ(x0)) > 0. We may assume that x0 is not on ∂X. Otherwise, we are
done.

Unfortunately, Q may not be smooth, since the eigenspace associated to λ1 may have
dimension strictly greater than 1. Hence, we have to use some perturbation argument.
Without loss of generality, we can say (ϕjk̄)1≤j,k≤n is diagonal at x0 and ϕ11̄ ≥ ϕ22̄ ≥
· · · ≥ ϕnn̄ and this implies g̃11̄ ≥ · · · ≥ g̃nn̄. Let V1 be a unit vector with respect to ω
such that ∇2ϕ(V1, V1) = λ1 at x0. Let {V1, V2, · · · , V2n} form an orthonormal basis of
eigenvector of ∇2ϕ at x0 and we say λ1 ≥ · · · ≥ λn. We write Vβ = (V1

β , · · · , V2n
β ) =

Vα
β

∂
∂xα which are components of Vβ. Then, extend V1, · · · , V2n to be local vector fields

in a neighborhood of x0 by taking the components to be constants. Define a matrix
B = Bαβdxα ⊗ dxβ ∈ Γ(Ux0 , (T∗X)⊗2) near x0 where

Bαβ := (δαβ −Vα
1 Vβ

1 ).

Note that B(V1, V1 = 0) and B(Vµ, Vµ) = 1 for µ 6= 1. Then, we define another tensor
Ψ ∈ Γ(Ux0 , End(TX)) by

Ψα
β = gαγ∇2

γβ ϕ− gαγBγβ.

Obviously, we have

Ψ(Vµ) = (Ψα
βVβ

µ )1≤α≤2n = (λµ − 1)Vµ +
〈
V1, Vµ

〉
V1,
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and hence we obtain λ1(Ψ) = λ1(∇2ϕ) and λµ(Ψ) = λµ(∇2ϕ) − 1 for µ 6= 1 at x0.
Therefore, we can consider another quantity

Q̂ := log λ1(Ψ) + h(|∂ϕ|2ω)− Aϕ

which attains maximum at x0 6∈ ∂X. We want to apply the maximum principle on Q̂,
so we have to compute ∆ω̃Q̂. The following two lemmas are the key to finish the proof
of the second order estimate, but the computations are too technical to be given here.
One can see the original reference [CTW17] for more details.

Lemma 6.1 ([CTW17, Lemma 2.1]). — At x0, we have

0 ≥ ∆ω̃Q̂ ≥ 2 ∑
α>1

g̃iī |∂i(ϕVαV1)|
2

λ1(λ1 − λα)
+

g̃pp̄ g̃qq̄
∣∣V1(g̃pq̄)

∣∣2
λ1

− g̃iī |∂i(ϕV1V1)|
2

λ2
1

+ h′∑
k

g̃iī(|ϕik|2 + |ϕik̄|
2) + h′′ g̃iī

∣∣∣∂i |∂ϕ|2ω
∣∣∣2

+ (A− C)∑
i

g̃iī − An,

(6.1)

where ϕαβ = ∇2
αβ ϕ, ϕVαVβ

= ϕγδVγ
α Vδ

β = ∇2ϕ(Vα, Vβ), and C is a constant depending only
on background data and A1.

Lemma 6.2 ([CTW17, Lemma 2.2]). — There is a uniform constant C ≥ 1 which depends
only on A1 and background data such that if 0 < ε < 1

2 and λ1(x) ≥ C
ε2 , then at x0 we have

∑
i

g̃iī |∂i(ϕV1V1)|
2

λ2
1

≤2(h′)2 g̃iī
∣∣∣∂i |∂ϕ|2ω

∣∣∣2 + 4εA2 g̃iī |ϕi|2

+ 2 ∑
α>1

g̃iī |∂i(ϕVαV1)|
2

λ1(λ1 − λα)
+

g̃pp̄ g̃qq̄
∣∣V1(g̃pq̄)

∣∣
λ1

+ ∑
i

g̃iī.

(6.2)

By Lemma 6.1 and Lemma 6.2, we have

0 ≥ 2 ∑
α

g̃iī |∂i(ϕVαV1)|
2

λ1(λ1 − λα)
+

g̃pp̄ g̃qq̄
∣∣V1(g̃pq̄)

∣∣2
λ1

− 2(h′)2 g̃iī
∣∣∣∂i |∂ϕ|2ω

∣∣∣2
− 4εA2 g̃iī |ϕi|2 − 2 ∑

α>1

g̃iī |∂i(ϕVαV1)|
2

λ1(λ1 − λα)
−

g̃pp̄ g̃qq̄
∣∣V1(g̃pq̄)

∣∣2
λ1

−∑
i

g̃iī

+ h′∑
k

g̃iī(|ϕik|2 +
∣∣ϕi k̄

∣∣2) + h′′ g̃iī
∣∣∣∂i |∂ϕ|2ω

∣∣∣2 + (A− C)∑
i

g̃iī − An

=− 4εA2 g̃iī |ϕi|2 + h′∑
k

g̃iī(|ϕik|2 + |ϕik̄|
2) + (A− C0)∑

i
g̃iī − An

(6.3)

if 0 < ε < 1
2 and λ1(x0) ≥ C

ε2 . Choose A = C0 + 2 and ε = 1
4A2(supX |∂ϕ|2ω+1)

. At x0, we get

0 ≥ −∑
i

g̃iī + h′∑
k

g̃iī(|ϕik|2 + |ϕik̄|
2) + 2 ∑

i
g̃iī − An
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and this implies

∑
i

g̃iī + h′∑
k

g̃iī(|ϕik|2 + |ϕik̄|
2) ≤ C.

Note that h′ > 1
2+2 supX |∇ϕ| > 0 by assumption and ∑i g̃iī ≥ 1 > 0 because ∑i g̃iī ≥

n n
√

∏i giī ≥ ne
−F
n ≥ n. Hence, we can say |ϕik|2 , |ϕik̄|

2 are uniformly bounded at x0 and
thus λ(x0) is uniform ly bounded. This completes the proof of (E) as well as the proof
of Theorem 3.1.

7. Concluding remarks

7.1. No C2-solution in general. — In this section, we will give a brief overview of the
work of Darvas-Lempert-Vivas [DL12, LV13, Dar14] who proved there is no C2-solution
in general.

First, we consider the Dirichlet problem with the following boundary condition:
(ω + ddcΦ)n+1 = 0
Φ(x, t, s) = Φ(x, t) for (x, et+is) ∈ X× A

Φ(x, t) =

{
0 when t = 0
v(x) when t = 1.

(7.1)

We always consider here that X is a compact complex manifold endowed with a
holomorphic isometry f with a isolated fixed point x0 (e.g. X is a complex torus Cn/Γ
and f is the map induced by f̃ : Cn → Cn where f̃ : z 7→ −z).

Theorem 7.1 ([DL12]). — Suppose a compact Kähler manifold (X, ω) admits a holomorphic
isometry f : X → X with a isolated fixed point x0, and f 2 = IdX. Then, there is a function
v ∈ Kω for which (7.1) has NO ω-psh solution Φ ∈ C∂∂̄(X× A) where

C∂∂̄(X) := {w ∈ C(X) | the current ddc(w) is represented by a form continuous on X̄} .

Note that C2(X) ⊂ C∂∂̄(X). One can choose v to satisfies f ∗v = v.

The strategy of the proof is the following: First, by the Perron method point of view,
we know the solution Φ = supv∈V v where V is the envelope of all subsolutions of
(7.1). The envelope V is invariant under f and hence Φ is invariant, namely Φ(x, t) =
Φ( f (x), t). Secondly, we notice that Φ(x0, t) is harmonic with respect to the coordinate
(t, s) and since Φ does not depend on s, we then have Φ(x0, t) = a · t. Finally, using the
Poisson integral formula, one can obtain an estimate on the boundary function v∣∣∣∣∣ n

∑
j,k=1

vjk(x0)ξ jξk

∣∣∣∣∣ ≤ n

∑
j,k=1

(2gjk̄(x0) + vjk̄(x0))ξ j ξ̄k (7.2)

for ξ = (ξ1, · · · , ξn) ∈ Cn and this estimate is sharp. Conversely, (vjk̄(x0)) = (pjk̄)

and (vjk(x0)) = (qjk) can be arbitrarily prescribed for f -invariant v ∈ Kω as long as
(gjk̄(x0) + pjk̄) is positive-definite. These complete the proof of Theorem 7.1
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7.2. Toric setting. — Although the theorem of Darvars-Lempert-Vivas tells us there is
no smooth geodesic in general, Daniel Guan showed that if we only consider the toric
cases it is possible to have a smooth geodesic.

Theorem 7.2 ([Gua99]). — Suppose (X, ω) is a compact toric manifold and ω0, ω1 are two
toric metrics in [ω]. Then the Mabuchi geodesic connecting ω0 and ω1 is smooth.

A toric potential corresponds to a convex function F : Rn → R via the log map. The
Mabuchi geodesic equation for ϕt corresponds to a similar equation for Ft. Applying
Legendre transformation to Ft, we obtain an equation for Gt which turns out to be
∂2

t Gt = 0, hence t 7→ Gt is affine and Ft is smooth.

7.3. Singular setting. — One can also consider these problems when X is a mildly
singular variety. In 2019, Chu-McCleerey [CM19] proved a similar version of the C1,1-
estimate in this singular context.

Theorem 7.3 ([CM19]). — Given two cohomologous Kähler metrics ω1, ω2 on a singular Käh-
ler variety X, the geodesic connecting them is in C1,1

loc(XReg × A), where A ⊂ C is an annulus
and XReg is the smooth part of X.

The idea of the proof is first using Hironaka’s theorem to resolve the singularities
p : X̃ → X. The Kähler metric ω on X can be pulled-back to the resolution space X̃. An
important difficulty is that p∗ω is no longer Kähler on X̃.
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